name | correct guesses | games together | ratio |
---|
name | correct guesses | games together | ratio |
---|---|---|---|
gollark | 1 | 4 | 0.250 |
Olivia | 1 | 4 | 0.250 |
quintopia | 1 | 4 | 0.250 |
IFcoltransG | 1 | 5 | 0.200 |
LyricLy | 0 | 5 | 0.000 |
razetime | 0 | 4 | 0.000 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 | import zlib import base64 based = """ eJy8vV97osjWN3zOp7iv+/Q9AdS+2oPnICCgGMqmoKqkzlDyhAgoMXY0fvpnrSowmnZmembPfve1 M91pEapWrT+/9ZfnerfK6//J34r/a+B//uf//M///u//GvGzSdznB/U/Mgifq/+venhYRA9f/ufi f2L8z5SoP+SDkz8EsSMfwrcHvnPlg18ZD81xIp5J9SBid/VAc6e7wOE7Hy+AzwPxLLvPi9yxmbd7 eCkfHjy4IamcWfwgnuvKEXFglPAEt4lddnxoHTt4G8Eq3SY78spKpFm7MfedmN38kJg725iF6nfO iOw/M/p/7H8SRl6/fBl+OPyM4ec4138vaSyIE/NafU71ddS4+VJ1cxP/5jOBD7r87q5Mf3v1+TaO W+f6ZgP1p97W5PbiwzY2P2+8Zn549b3N1TbhL9viZlsMftzPVbr6z1ty3PsxvvzDJOby6vfa5b/Q zpv3v3e0CvrvfrlZffMkebW12OLvV5/NmX2zG6pXBoS7opXaIv6ZXd+IhYObE/euPlsWl5XiyrxY HK6f4vZ/13TraNWolSxim3xemzqPxedDPYMtrwlbOvSKPRLz86SuaNTTrTtRvd25uTte0Sw21/XV iQa1+fmZZ2ridzcNigs5rmmrbxa3/dYUIanHr4lPGLva2rK8YV56dVO4Gac3J3ojBSF1NzxjzaF7 GBnRK+KnXk2uvns25ODziNNtMbna2vmWVfjV3/0gCY5z6RWUmjcr+3Ou/uuf8PZmfMlF9NDmHa95 TIyuLh5N1ldPj7zDNc8NgM8+bwY08K6fdH1K8VK+UPvUutXoleHfLd/MquKtEDSTA1rTYP2R+lRG 3ulnupWRkVd1T/T+RPWffHYkV3LaE/5GxBjruF/227TUDRKfvoFQ/2BTb5DYNMvSes+FHIrAHFLL e88Ddnq0R7M0OHQ7GQ2uDwYPwlC8kpId6Cwnfm5ncVWd9UVjzXOTUl28MktZ2NGRW+WPrAmHTNAj EZbgJqerqT9JmuPQIFMiI/O0F+Iwi9i4SczTjHonf7EsH5+asZ1Z5EpO//znijWk1qac/OWXeglg 5kVO/4TPROF+XvynP16nqtL7N+v1m/6JClOtdPsXN4WfeqBv9jtbs7ir6PYn115Wxrz6ig5/+hN3 IpR+/pum2z2a+ckvF//Rz3gQX632/gFc6MbM3yVDCvxo/ObWfnTCnv4Zv/UrC4j3ecR/cWrn+O5B ePM72yT7396a59/w4x8rR6TbgEx+kwy+6G72G1uj/Hprf0S3bmUn/3e3Rv36D1drXAuq/uG/K5cL wW4P7U8MSht2/PYbZAjDWCnH39ha3NnN69Xeo5taGRWH3z21H+zL1u4cwCfd1lrl/MbWRlqZiuLr ze6c2pTorR3bv1qtkzT6WuN3GDI372uRr3Qz9Nb+mA63P2An/kRBXm0T6Vbu/+zi6x/Wk+E3gMtM Xq82/lO6uYtO4/wGCgo13PyD1V7TzVCW+ze3RjVI/kN+vF7ZhLFo/mcXX/149A7z/sE2y1+t+x/S rTr2ZPhLmiUb+pdapKebASv4XZXzI/sL634NXDTo49H8L24KP+vhvRO+u02Am/dXe49u544Mle8a 4KSmqXcN0W88uwXX1r39q9UC3QIj8tRSE2DOd0Db0ZX3ce2J4EO0Y8/h5s0YHP3TtTcc3mwzabRn l3vof3vz7M7FFzLY2vnArcHOyn5nxp2tRZlWObu7q72lW8g0GdTODNCUf7K1eHizNfNmtTfRhcSr XUMDOH2x+JOtwZPPGS/meaUdiLyuHdFY+RpgfgrfpZu6MTKznK+D8CdrrCyqRu/ZsnCf6jZj22ie bcJFHoRT8A9euNmOpLceRVY9iBvrJTLDt6yBaxs6S7ZcRhsfYeh6VNh0upryHJ7+TXrl/IlXH/m0 Bn4LX8UmFFFAp3xDK/j8LbNH8+K53UgzbMSELCK/XqbbUC3EyFJvtOL1cjUlcEqnb3JC3CfhL0nq AB3aN8GL4dqefaTMl7A6G25GYxGdwQct+Zk6YhIKEvgZmMAXg1vSdGu9ksQLR7C16gluHgkJF7MP vVVcuXxZTWpwSdanlecHCyGl8EbfRF3OI//5QzRlaXBwXsXEG+Ww99W0yPmm/gkXJLIJl0mTzUVK xBN//ohEWWNIItuQxTrgcDNLcmv2kfFyATefpk35YtBBaYtlT0iSq6U3o/kKaMEaWfEzP+Pq1nW7 xK3gTrJziP6pOkFc2ZMID7BSuNm5fhW8TNbB7AOgqLpYpLNTYaqt5KsKts7XVuS3bwvRlnRAnOxM ktyenfnGcWAxsNVCrCt/akTiBMc+GrgNOP6NJaNtacOTeSzCJd2SF3wYnPgpF9EHnHgpfN/JGmsI ZJjSLc+j5mSJxhzG/PlkwNOqJDgNRJ2NcqDN01TKwgxt4L8kD8ghAzlFmq4EOfCmzOHELbFVZJmy 5rRZgfOr2Wd2NuKNk6nVNNYm5u0BWAToxu2YFXlkk8Nq4uQgf8BTYV5Y7ZIIZAn+E+zEAui2WTFg dLtwC7gWVjaCfwA6TUL0vYGQrRR+eMw2M0s2EbCM3KzqsIGHBYXfAikkMOjQFDyD1QI/ihL8+KMt alCOcMEyWtKXyGrfQE6nydZ5WYF/Dqe0A6JPF0sqOWzteqV8U52QbgXwZxGcLpJj5E2YgSBnUVpr Qa6fz+nGAYbcHcVkdsoDeLoHdGtGixU8uJhKxRLAb/kKaCrgkOAhilcNxV8bB1Ymz91Wp3xbv8DW z7gakFsQ+jaDz62sWgNzex8cFCm12hGwBAe7gAsZZLY5MlZNeKBb2hEZ5XL2Iadc8rP/hkSPRDgF nsMvvEpWBLKuMzjFGugExpdXKSc8qWj2VNWWkQL3Jz71Vx6hUVqO3Or0mi75Augw4x5/iy3vtJjW UV6xX76cVv7Nd400aMOCjfCUUl6HC1hNgrTgzagU3hAPYs455anSbzNr5cspbeoXanFFJ9jZcrHk WWQOjwaIEkr9CTBWFgUnzv1s9MTbpZw6m8hC/XVK0tpDZoZTlhxU0nxttX2YbKI0MtgFwHOXaCiY fKINC6JnU9sCvKBT34O/+Fx937h3gfsZG7q5+Mu1LmN/cjN+vXQW3rkB4N5fV9YbHHR3eB+jdW+t EQMt4XjKI2mKCa0U+unMW0lF49NcYTju5Nsi1IFyvaUJF4dc6DApfKE9a7DXWfCqeFt7VBG9MMlB eyU6OpX4vMy4r7xnA5Z7E1ukvv8RXwG4a3cmxsTCVdAXfM+PG0h1E1xLy4n4/NCTg5tIewfyej+r nF2HVeNleJNcuEGESUquzf/2OiD8ZbWPicc74KKASOj8ycWLyLwKqzbFx73osb4Zd66XO4GtXYLA SLfbGGOdXUXjJ6ura3H1NzA0scqrwDgZ/PFqvXk6IVfXRioubty/2I+T4OrUPP8PtwYg+bJalQ8A APcnF9PwigweW95u7YY1hH+9NSq/bu3a0WJgfK6u/eWEb1JF0dWKaDD+k9W2GdrTTzLUZ8auaHZz 8bKObrdG/nBr+ZnwT9ZAhsRMzSfwvbk4vYGmnrm+zurcHtrAuHYoUNauEixOJ1rBvYAIDYpfrsWV vXy9ELcGDHkdqpd3VuJ0cuoV3bXGzcXLez5lbK6v029d5pB4v64W9dn5QnykG9dySH5dLXh99fn6 oLRm9s7XB9B/6MKpXRNfn1IqL3J6fa24c60RJ+M7Wwu3N6emV+v+eh38NN/n/bXG1cXO4g4dQH3f 29r+3o0NWO71P2w6fru7Cjn4cq368/Pfrmn2fp3FUTlf9pk7+UK3wb1rDXpnBXFKz9e/dypmeme1 bqx2dhUo7y6e3bs4+UoG9Wf96wIYGJR7y02e7zFvKO9eezdK1RT3thZ9vamiWzO+dy25F4pwi7un Nrqz2pn5uVodKO8uvse8xLm3NXaXH+uzcWe5WhF+DYhY/r2tJTdM2/1l8gvzKsm4F1MjW3d771p6 L3xD7jIv/+U6+BncHprRGwZ+Lyx/vsu8yzuH5iHzGr8ut/y86JNu3l3m5bfM292M0ntbE/d0v1+f L/x2dW3G7oS8wFDc29rm63WxshO3q9U3E/G9AJx3l3kF/2W1yk6YN8BFf1F+3VpHt7X1KxnyL8zb R6nO11Cg29rdANy1dUe6dde+XjPt5UfcQoFua4c7WwMk8GW16mYrtdyviRnQvHe2trrHvMviFrh0 y/15b2vkob1Hhvev16lsdXxva0vnztbC8OtqFb8tbw7gcjG9t7X1PVGrfz00vNkVk17RrSnubc38 dbW+C8xLr1fWbe0eQ4YDtdpPOe2ulb9cayjVe2dr19jr8gPW/c5qh5+B8puL7zLv6M7WJuzOoRlx +vXUFN0md5k3vbNa0Lz9zozrrUV/VV/w54mZf6MsRf8g3f61m/3Jyn6R0//kZv+Mbv/uNn+nQuRf 2Obfp9s/2+Yf0O3fZ41/i25/sbK/R7d/vs07dPvviNO/QbffWNnv0+0/2+YXuv33VNB/SrffXNnv 0e0/3+YV3f67avs/odvfWNlf0+3f2WZHt/++qfundPubK/tzuv172/xSUf7fodk/pds/WNkf0+1f 3uZfALh/bZt/l27/cJv36fZfYI1/iW5/ubK/Q7f/YJu/0u2/JE7/At1+a2W/S7f/cJu3dPsvqqD/ kG6/vbK/WVH+n9Ptv6y2/wO6/a2V/RXd/qVt/nFF+b+8zX9It7+9st+pKP9X6Pb/Dzz4J3T7Ryv7 i4ryf22b/ywg8vdX9jfp9o+3+YcV5f/yNv8duv31yv4G3f7qZm4i1vvCrNNkSYLIqrAi08+ZHCS+ P3Ffvo/iqt4ufD8sBsWXm/GHYZTSd8xzskn5Rpj6srMIJI1Z/J40/FHlnJo+RzX+KT++vz/CzxMv SyPH5LHA1kCdeV5PnBg/fDyXb1HwHW82lbpc2CEN8dRnH+N5NsC2G1W1qjLVqW0NjO7DkfDIK8Zm s77rb+q8M1c9dbh6aK3VGRM1xVb3Knq2qGK1okezfUksjKhi1aou7P6xYp7+cFAv16LFp5VdlNRb B+Sy2pXdr1ZndtyNXFL90HcjqdtTR4eJDviO31jS06FIezKsVACYHhl/UJ8tglPbrzbV+QTb4N5l uTKxHuaaDtTRdDhsezLwjezI4B07MvgXMgREHZpB7eKHOplU0n65SV30q/V0jHv8szju3osXRQaR 92TQIgWHRmOC20Q68J4OVtidGvXm3anx6tCdGt/q1Y6cx0GmV1sd1GrdxndTzbT0uLYeBh0daE+H Ll9uZyzed2Rga65PjeoKkh8r7vWr5U+wWkMtt667UytwuXNFB++g6ABkyDoyZNR968hAeubtMtjj N/kxtg19arzsTs3Nu1Pj/LJav19t1skpqfmFDGzZM2+hu9fg1AYXOrCeeXUNBpxayCZrfWru4Z3o 1VbdapN+tW7VNkZijhUdkkAzb25e6JAB824VGTZld2plHHXMS4Lvpjq0roiBNNwzFolerpz6P/Ry a6r12/gnS8ZNJ8Rp3igyTHRdNz0W1sO5I8NodaaKDEbeyVpWxaPu1DaX1VbdqYn1u9SrXZLn9lUq MuiqGyDDnk0iRQZjNSU9HQ4dHSSdVPrUGv+UmurU5h3zvhUf/WqLtl+t7A7NcOv6QoeV6OgwcLpT k15PBlEdOjIcOuY9OY92d2jmQa3WgOWeu+WSfrmroHjHSlWkg07vejYzL2TI1kyTIfU1GXLLU2Qw UNae+lNThIRT8/zLarPLamV3arDah10vw48dGUhnA1D1jmNNB1l2dOj6TOgx8p1v3am9r1SDclHe dOxibvg8e3/Clc3tdum+qJvZafU8xC+uBm2MH8Jns0cL9NdZknTyDH/Wh9zkAbf8F6Ibbx3GpaCV VUcsFAblfEiYXCYvY5FWdfu04WEuZLyy26FQ/MbbtBplqwBXEb33mjmvvivmZmZ1jJLvRzxtg4p6 wQJ+RBVCg+/7xwHQ4+y0ae1U+ukUtjDGrR5zNoq5XQi1tWPrRz4qCM6fpgWYv5FnyMYKtX2sK1Lt BlFQL2gj3/TNx1N1wmdQfu54MDf5SPNUHRO/deB3U//+bHJgbCOfOhVPa9fdyq4Tnn48ed5QNn2R kTeSDfLT9zN/GYMxjkbUVicMqzl5YotVwb6DqzP4shzxZb2I69bE1YCFfmW1BCWDRpmE0cSbR83h rOi0JUrFpyJ7X9mnBlV1cS4bhmKnVjYhHvHLVBWVLnmnYcMwr6ngteI7Il/G77x2OrqdYjkJcTUu fW5JZh+GC3E4JFtYGRJOpHWu6LZ8HqadUSFVGy7USts2s8Nj+qLE6luUaP1FJ3SZmMpgq4cB8+qi ScASu/gTwNFs47i98lM3P9ehWBZLaqva41aK8bGwx/Earp1bTqTLYelPY2VLETHgr2XrKZ5hZYA6 C1hmTj4Or0Qz9DwPiBv5lMNOFoxJ0nFA/WiPh4/nSLGTkWzXRw2R2IiZ9c/1Um5TLSYgDYedNC1c TZqIkUcq8opEX8DDZWC+KzqDXUBepXV1MtRJmCdCvdIhValUDlz8ys7E41yf6NqmzuqMaulodqMx 8OYNqQ5cHVgld+nZOxoJcrs3qqmJ3B66bhUPspp3F5tHZbVBzKSLJ8qxxjZEMyd8v+GDdhbzktOG UL7xXUNMyQL2/o2fQ1Umwb365xOsZtVkdlxZvlJJG2TQ4Tyti4T1N0/G72wpkV3MVRXbyTZTdnOU NPWGmdlHZPFDIQpdqwfMy5GOSu1YDRDakdsMCT2FnUzYx7gbHsDb5Lkd5FXpGLCVwcLtiLr09t3o AS9xv9tJWqLtdOOm/sbEwS50xS+cYpsIj6qH4qHBDjYgx0dDbjstgdWIwZhRr0Z+i1am1qyKXVKH Iz6j3vM7fplO5GO2yRT/5YLunyb1a+KOUwMIPUkF8VY2bVAhknPZM+zj2sRVhoc0WIPgl5/+gjh4 yZSmQowSERzaZEP3OYstg3kh5RUfpVWYrT3ayaV35L4CvmmSPoyo3xlcX+Yr+wDsgnj6+cg0c4M+ hAc+qEA5ftlfPolafZkGQ1N6oYATHvDk0DJNlywWwGsvoHrSsulLFalHvSf3Uv+iBD0Wwoo6wjJu klYBuJpMVi+HNGXP+zh1YCuln1czm07qEIBznqROQ1IngJVFcR0uE5Xhr+pdZs6OMRgOabVbEHpV U1YM1lcKkjgg39MOCM+lH414TcIUjMNKAxclpwbfOB7eHfZ9wmI+OOJYnTDI5UpjsKG05DHXLCMi 82ZrJOXOrK9gNeJ4Z4upUsujFTtte3XUnZpP65LyunVBlALOiVxtSsGrUShtPlyZo05Oj0fYJmgN LicgFrnae0X46iLIlg8ALpBKwP0hMCxYrHDCKiW3MziUN8paF3biSYUEeGukTTlhtR45Axfs4QI0 W0lseWb/hdwD0eL+nqPo4A3Fei4aoGkdarU+lR+p7w0Nici5CtvCgos9f/a0xfk3zk7okqcJ6PZ3 FtQ+rNwFHDtUhVvw+UJPt5jQjbOdm3JY6FIeWP5D68ZWZHcVqP4T25lZ11EK+myyahTzDqk5brPk AJp3vE2mxT6dFi4qCQFaBFdupGaZruuQgWwxwZ8/pHdYpNW4kdP2Z36WC7c6eYUHFuycDVNP6kJA c/cuRflIEVJxPwTeA6yDTOtZoNuJv2IUlioXeSDzCIAXNU+w2pDEQv4AnIvWu9KeXfHeuYlzpQSW xM86JQAqqMxIp4Iyy3kntmy0fdx9rDed0IPyjJflILXXwzlCfJMOF0ouLY/YRYCiByqKodYYgXZ9 ix7aOQ1KktjymNhtxsTY4Ut/wcCpXZmz97WCWKeTWp3VgjqXaC8/BPfwUHxuZu9G8XEIwIgM1Gqq UrEEFmhpLLH7yO06chtkhwJxBjAnHFgAvAlqOFlSP6nCHYrSqhmPDK1Z4QKfgvOKUQKKLUjqgvnH oVfN02RbWvmU7aXCZBT5z8sn0ZynzpKm9U+2kRQLmuHufEqn5YDaYz/xSc14HT+afpZZZSVeDhGr SEJFuYlBjrloZ/A7BXl0lT7zypRseJ6IyjSAcEt1xKxIkrglwLxvXfXujDewUlb6GVPdMUERUMq3 pSt8HkjuCzgIS1oXu8AMfiYJKjsNkwBLwzYA8M2Blq/rSW0Dg6IsloDfBhq/kShldAZq3cs3DBTE mx3Xn8pxIRqq/MYn9/s+9zKF91Mhy0ezC0sA7igALMMNXD7BG4zfhas8lQ/RmPPeRlwiLnT6jKVh vcqZA0jO41pyeq4d7fGhCpIMDAnHlc/BosWbwkeNwVD1cziA3CQgi6M8tvyBqHo57WZQoWVnHPhv bSJI6YDwDq+V/ecenwOEiJPJZ3FuwkEcyLYYMA8Mb9VukXZyig5G/LFgFhhoB/itZQA7kYZ50RS6 t6eyHuU2fM+482IoZjXDIZkSb82oCxj2GFXZe2TJR7RKcILOk1dvo0GxRwTEgvJlrZqSyXvCvD2t W5p0/oKRBqAcU/oD0R9sc/tUhRMudBQKoKYgugNLsQgwK849uMciaBf8z5AXNt2lhDxV1rc0br+l yxZ8iuokvBD123s+ACSZOq/RGaw3mDxptiSvw299uTGqfYMDNzNOw1XdskScNiBrr6tBPVBqRdSe hM8TpTBPGRBeug3lBDRMcfbec6QpHEIxKeEQQmIA8DjNe35a1nPhESpSCQoPcWpN8tQf5Cac4pkP gJFnK6EIH65NeqLgSuZ+rEMWbDc3pJ0Nu+pd8AdiHZI4yxRBDHpxyH9UQ00ivRZ7hs1o4gNQaXGl WwUOazCB4EGgPhOoz3KzneTeqJXTkuS8HORHsOADsoWbDdVWPPpIxXrAlq371Ei42QjwmURmJatB CYd0SAzgrw9m0Z8AgveFZ7WaBfgIYJIvBw82TZ3jInX2ZPl8LCwnebTLhduUDfzbiCMSUDQHEG2O vhlC1V7Dl18OH8QLLwBv4R1+5DUbKZ8SHpZ4sSkrXdONJnHBKU3cQ8qD0VlOCpGKuoHTNOd5ShSR V2x3BhaIBDxtZcHWAjKPTXpMaxXNAxXtzCKlro5mcgPhyxgcWHCrzXjPJiWcSqniFfOzdHvgmz63 C3bWLYNKozTDEUbzOigaPJ4feih6Qg2jmDZZkoGCooPQzpQ+syLW1Luk+n4En2nz5LUACAHj4qn5 xWPKEfdigX1sM3uI8bX93CTaEUP+WiSHLd/UDVrrBahkGQACq8Jeny3Shi5UG8nyGaxUvVhgIBNI gT5AzJ+PiKIMdKfXyfd518QYrgcFyUyK/uULXDC4Qd3LB+3Lo4apill0ZW+jRsbGHxvc4n2xBAY+ tjd6nm8KWvRq3hw13L2o+dYoMF7R6fli2+mo3jED7xdP6eZQqhFnlfKQh+7L9700d5dDMeBUwmS6 uzmVm0M5w2JdtObFi6ZTexBLrlTOp8YJRRqMg66rSIrU3Cm9DvYzREfrKQ3LXKEcBH+nW1UOqhrs AgCdOnsE/A1aBPws/lP7m9rROjH/oXd9BFWEB0Mh+GF+bD+drm3xmnienSbfEXfsk020z8X3kYpS aVe65uxySuWHigOdedcCBzfYyI/FRdSAYU3leIWP1vM70A0jCpEEWIbbnFz4STlacHMu90wF3Mo5 enyKn7YaGBNwbnuWAFLYqkegC2EYyhfHrVWj5cpTM+C8ldnGrDtyYoOjtX3eS+tyauciqN/Vw4Do evVWg664wf2CK7qlMn4cVN2pMguYeSOb76MLHR/aiFuKde7sZHdUK0vttlygU3GzFVMF1/RWunaH SzTmspMsqaSKYrlb2mD8w+i3klYnCoquO0HSrOzvKu1B7G4rKi7k7yJfBURmoNrndNrtpPbOOdda 48pdrjdrrwKcQSRAgR/yHHV0qo6A933aCT1AsKMKSVT1EPTbvm8HRq8OBM7fqy9s42P3hTmq4wRX 40n4qXvHniHOwGvTjfSvr0XVbcDF75Hq80VXBqBohQ6Es4gaJS7A/W2C9lI9rBnz/gbcIwncACwW ABu7uFSUA9FPAEUJagXKrZB23i/iVrBY2vtIzc5vqurueqlwL7YGE/8zvQZPp4B8gPDLFi5Ay/Mw p9Vp303hxBO2FhMpWXAcJqb3IQGGRcEokxYFO1FMen4zulN60VuFU7KoFMEBDDK9RBHAdiLcvA0k +W1Cq0sk8BXorm+2qrR2ZQmGt8bfkkloF1ohgjTs3jtpCAqzpNmAd1EsHf1LLL+PYs0MdyN/kAFm Ig5wMeCtKlRAGLn7NpSzNlmtVuqz6XPPXx9cg2PFXkYfjuHLImE3WuH7nCxlpNT6mQ301tY6pI9b O4fqeuwjW7DMRuSpVRC40PxacEFO1WqVnPI3sNZ1chtIGmIgiVSHn08Y4h84Qm6idzAoh1e5KZFW 14EjGlk06a0Sb8b7HsI/BQrCh6kSpXK4WM6GfWbRoHY4crVQq/gG+JnvtGeJ9OGU60ZRZN4h2AFz gVrERtfHp7dy670bKhSoBTfMtuuL4AKuGPQOKm/AhWNqyl/vanccEAIUJVmsr7UNMGsjFZATbRpZ ZYw2kdQ802jQemUWOPxTHZD7ikO4rQbXeSvLiWmngjCSaT7iKV0TeVtqw2GHKkewBhphJJR0MQ7q jrdgyXerqRok6VIWDwzBSkUb9+WgjQq4hyAilFqhBBzmkaD0FOfz0JmfQwZ+/JROCgnO2J4DKGTJ IUz1cAV0xOgP5fssixAcBp6qyUQhuLJFDrK5p6Y3B9h1hM/cQjkToboZZSHebBDDzUBr6JuBL2Gu AuKxZr2PKukKjLlWdZxji42Wve1Tc3CkR1xgAfi3EPwmPgXmjlFOOedzEL1lAsrTALrsYQtBbBOM hfk5xvyZdYw5qK4p3Wcmp4LFJtB5D6vZ0k9SDDQpWiBF61+0RppyJwFWcutQrqqaZmbZxuDhUThF Ws1wi/iwOTwsAMJ/eZi8PMygXVfRr4SvtUVXhJ/N+bbIqRkPBOdBDiYP9NmOfC5kxwSZ4awIUIIz kwkaSkyK1iFdVWEiBPgSgIKI54FNbAccvsisB+DHYgReoEes3Xu8cSZxvHt/2njHFMhlRNXIA97Z wf9NNgEU5I0pXDTjrHRJUIhE4BAwUOViNAKVvWMJYgv6yJi8Crl2ahtjZvGA98kYz63ocH5p6apd YOZvUYoJv9l7XMWnyBuhnDqoNYpzKC8hVl7MjSdxmMUb6qRYKoGxCtxahYG33ZHi1ni/tdmc1LsB 5oIXwroFe6bfFBYbGTIgZSzkQKR1hcPS5LbYLASdk0FoUUCJX7eSmypAnKx0gBgEXdLkuNsDYl8A n/lHtEigJXbgM020Pis3OcgdziLB33nN9vlAAz4wLpdedMp94IC3IRwaaJHTwADPbRoL2oIL7S4Y nlLtg0ENc4844Gh5c8tHMXvU8wlDH6DDKwPlyAKA7h5X7AQI3U8YSY2EP1jxcr2notWGBE/R9xM4 xXdkDOKHB+0jAI9Vz/NYjH8CM/9Yg2QwVubob2Y1WPygnIEKKo7RxNkAN28B8MJNykcMP1P3MAC5 3dGmUzGgykHXpfDwvXo4pzqck7x9sG3xA+2CwRl1iOVXINT1ygu3c5M3bItCTwGXgUiJsY9CTcyQ wmdzqewEhsAKjvqOsdaVHwdf1uHAAB3lxaIE3uHvtAZWmHD1IThaivdSHOCnVjre4krj5lMZCvDH gH3mTzX34rSgsLKZnXBnm0wcH7cKJ9ZSVk+71QzmJutmtXDQYzRZsHiu9RnBQ3Kj4M2KAtj2sqs9 wJADsQsReSGCmGFhSZTTEPEZmzoT1BYLAV9ISe/lBU8cVFLfTgh0AxGcGpiZATkEI+Iv4gZPVSbF x9sHmLsdfMlZe/X20T64uKpHLWYYVJrgyjGEMTfl8fG8VglV0BqlT0HbSgu4m4EjoenmrOpw527L PfBP3PHbIvKzIbjcztPGD+XHGB5M/cgsqLQ8TM3FBmFhBl7aMDfrgPlodQ5UbJwfmdVO4mZ3Qn7L zbICyzVlAkSNE7aqozmocfk0qa1VYOoU5fR5pMAeKD2TbeqFSMs36sEpMT4BfpvAKY6STYghiSPS FbaVRMvoVAR0EDUAaUGh5l65T/XOQgO3RuMWmXEQ1+VyxdcnlY2YlA6wiCMAkgP7ADvA9gVYLFjp GlYKUP9jZXl9GB++X84N6Vkv1PS3dBoOuDqlkoKbuE1wekrdHtzqS/aCY/Q4FLkpwY+pf2IuJeIF 8J3kqBx/YpYe9Bng1i7ktWzxz5QFAC9Na7ZmGPsZzdK6a7DlNIzEDvx6PiAp/ykEoO4pBeU4cS6j UxAyge00pe+LJy/MOJP1jTYV1hzYBOjI0K8fSdGOiKWiCHLlSZXhV1g1f8D42WinEnnaj4Lfh2dS 0dcugdrKoHzBaF5m+SICLlibVgySo1a6alqVq5P87J2A+D5tKOWbwlP5kSvt6gJuBXOHIHkR11zo reIJeuYirT0cNSIrmhsrXluoPT9HY9BZ/3IC6tEcxKq5amKnvKEYw60wHiIqsKfNAcMpcrWpQdDr UHDUCpPCw/jZEzoXQFgMND1pV4eq+K1XXgKb6L1kZjuRg+cPhPTgMo6Shk4M4B2PcAnuizdkD+2O esoOTFJvBkTOjsBrAh2tFNxp0ZB5nIYK4gM6nyR+Df4RIKXgcEjBeBsMMf6gABlkH8mmxghxph0v lYP6UQAwQbP2WXEZutKMwe0BqTmHysiAU/Yzh0MwVsFhHpvhArwNQNigEGs+j5tygaPXI15yDKsq B7fGKEJo5UG1xwBd7lkYAF4Qb6YK4FQwTlRWG9WANxgfrN0x4IcStkJV1joHdCOCsqdTFlWxBaAm zC3YGkKsZnzRbwsxWhqZRSerpsYY7V65iQjgakSM7INuCtT7r0zVFgAZXkDtmCegCEGh38LKfugM IlF0BEhVqKIhmj5YC4wg1+0XWSQgAaXDGY/Bsd9jfI0Fh0fphTWKF/haLYc/QYPsjBQRjhnvpV2A OvmuJ7qagDP0zTNu6/TZ07bYq60CCyA0Bc06A+1bUV15CFarHBi5SSkm8mgwxH/cA+6YMCynSw5+ qvOeGJ4RGOAt+pFllo9ZIAxduwk7JFi1Ey2LvZGYRQKwcljYp0e9NSDsc+trPwqhaOnlgRL6DeMZ ih0QXg4u5SicSjDii/mAMEM0lQlawfysQgKU47cqaYWhVOAm4L9n1BI26Lu5uwn3il0mznGOnL8h lhysVT5KJ/5S4vdbQZaQqawIuNHgtal0Ri+XmU2Dy8F0dAOFYJFKj6wxrgK4qHLeSe28rt3ey/Ph UJ6PXfSuxWgLafjrBfBNah0b8rpBOql9oF0y75L25n6dFQ8t4I/RHLTGRpm/KQeIZc0jNn5bg28K LKLsRC9KKEnGpyjBP4BDEYMuxwTDesLjvu7nM6NfoBb5AXIK7AJilzouaeiHVp5Wa0j2ZnYx2h+r bdQVW9UmwPUJnT6YxQatNRD65fuA9PPyrTpOPPJjtXlQRWzgXn/DnLuxEOb81xNt3biW+xXbnXor FHEfVFHbym2J+YOftEY70I5ACXjEJG4Oqt4ABNi/KAWjVJyJwxRjtMpqgT0FSPWOkCptJHgsEhPw QyCDt7Kz/arL6ynItS1moM9KlqS+r7hZ1BsKWkRWLcHoHkYNZPPd1AUigMgE9SI4ZZl6R7c69OxE UfPySvmbJwxjSZ1zohfVLH36ht4JMO8SnQrh8QBNIDFpvvaiC52Lxr/YiUtFOQYmiV37sE1vbhd7 kqgoKIZ1nF7MIoxS8Qeb2PKdBBzzBxbG3/jEH0oVCwLEd6tyAC6d66UIMMNvEbALl5AW/IAlooAr nHOMtQi+g1MLVdwxDaohriwUHgDkJgSu5hi2N+O0jlZ6+rCiYwqOWcJMM2ElFz4J1+faw4cBv/2Q Zh1hxAFrrYyIh3uEngCSX0QAytH9kgMQ8lWoAPDa7rYON6v2kV30UQYOVuw9snxMyh+kmqNhHudp 6hySjfSwLAcsvasCJFXIIk8lkh1SwYMwz2KeYlbNTBXTsL/vMVVCpuSbQkEoewAx7SdlyensUceu vxVCVZTYMm7zPKWoQS4zN6jtU9L4NvIaCL363Li5QKB1JjSrmbna7mzQwO86sh6yxAfY1Pjzp4lv r4OyRjFCuXU12AMsV1vGLc7AdKyj0tygindyUx3lZG0WVR97HA5I5Z1XV4EoMCajtMYBkiDogBnC xKZHhJcrcz2XzQFc6TajE2kxXeuucifwZCxcdu4EMvl6ymlXt42xw/gjUTXZqCBHUyXIk2cb1Pbb wjs4EXJTvDuuah7BoZwEuoqsnWVseO7YJ4nOZWUgjyCukFOpBhbSrfRQGtItXIxZnOC7HhqzlFt6 CVzGR+o7KgBHgxATDO+P9nhjSI7BSO4i0AWMxUkw+oYOwtokP/KgiFAxoq/EwN1JA7kF90dInx3B z3rDcXDAJo20nCMXVBjEd8yV508AOkWyKeK1B3Tz5SMmUNMlrfiydsC9oSSgPGN+jSPhpA+wS0gK Hh6GroO5pUZOqXKBQIpIFa0lLD4Kj6Ds+bEJQHm6vsocghJ8bpPI4hIjWKBI4SCqM/Fim4kRT0WB ERdCAPROwbxvqTeeMdFuHwdkrqPwIVubXdi+CTdEh1W9yC+VI0YRsIC3ovituXR7ELWVwqaV1Fv5 JgM6xa2KZVFlA46fb0A5brjpNwxopaPw9NvlYXVJjftPi+eqyqu6LmzILFXYUMOOxBCZFYS8BWeE t9mAYm3VN6MbIw5AhPuqgrwrPVQYjfFUhe1Z/Rnmj9sW9BuWDqhoHjPbV/QbLvGzlUoQlCEIK81N HRfqMhCJtO6k1xifp7rQHislfuRVZGEw3QBB1blfdK2nxbyzUEuAVELVtvhwapMCWQfHh3c1QyPA 5M8DHaKoK/CWZWGRBN8GMUuS73ttrcMJEJ8/TYpNxtg8qbpx/kCGVGDZzmV60RBxLVsWM2opMqhD MOLGl6TqMvib2i2WRdihHJW5oWYH8LriK2bCwx52RzC64LRh4FJiltuOpvUc1LYKeOzzM7MxtrMK iEiaNcCEccVSQNapg3QM47R8RB8AjGFG61ByMNUEzIdyjTiSArw6XZGkKpDAUymdRBxoV6rixR+H UHknGKAUOhSNOKQrcOsg18GnXY7A4FvgKsYP2BuxSP2Ia188iKrdkZm7OZZgwArCHE/cC4n2qw4/ 8iYyEYqBh4MgB/wu7hkEjj6pKHgY1bGwD4/ooBZnBzxcjLaUUo9yQxuJq8fyqBjrqXYp8Ft2BvcI RDW3sECkzQxVmwcqGmujYlC94GDtE3O8W6ccEw5YfEWAWXcq9lPh6tCBQNyrylkSXXvFKTgYiRF5 hZJNRTfMQieHIPGVkVDBkzywwHGNTLh4mChPRdeOZmyMzohH7JAxsyBUHDhojXDE3PFWbB1P84yl itTmg8JnwWkTV7s5dr882pQ+eYD3kV1Y7YKbg/4D+J3g5X2Az2XGlgGYdAfGIM6B07vMIEAmJ86D TNcfg5YAZvZw9nEKXhzouh3fOIr3EIeA2o+LQHFAaGAWApQbhbvDjcgeRIkWHwd/ocGKl3h+R3TM 5elAZ6oTNxOwp++ruh2k9jgAhfliMLseMmt9nA98z93QLcWLdY2jGzdo/gCYczB84BuBCA3QNcp0 aQHK5Qa2N4TT3kYe6LOipmy1KStpSe8pQJcQTBobicKUJLX5HHz2PQO7wCr4WtX6+rP26rMiAYcM VukcDKyIS8FhAEIuUlsOoyrkcAGKzUajap8jSmJMwue8ghv4qVmjRwe0GmFhDc1tcDCmxdToy1cp L3xieSMK3lxs1kj0CWlkpjC+fzEq7sJr/VSV/ZQC36iHjpjOOvqhocvNrSqpdPGVi/EeoItsxrPO 917CoXBkF3g6wbIxviwHGPdeVyRNOxwiwEIZxbLedL7RFqwy7J6z2C5mIFr4jjVgGaL6UOZmPF94 foCgmbMwic3S6Zz+GdVl/wvjlk70JxZjKTqd+TDx6ylLyxxOeEvFSLuMsEpU1Svv2Ef09lejV6wc 5BLHulEBSDrGqKcYU65C0wUib445lExXSWhuH/Bv3ZDXeOVZc9XUMnBqQ0UytVkjyrlaFhhIUsoO g79YfoJ6H/TYB1ihhVbbQONzcWlb4i/ayzM6n/Eilxhz5apMrH5DaSAD2k+6A/5SFeXY03kGmk7V ygIw4IMCC3TBq1MzG72bsuqu5syBC6aF6lxTRqbOzaHy+i6VX+fipWucmrFji4VZpXktKpSrpryh LgQEP2oSzsE2YMZrFCMZRN0/LJLdHG5WAX9uQkRB8QB8gCAXurgUHNgKGPbdrTFaZ6noHoLm3ObT lemDMuSgLHU3FlqsCBP2Ou7dGJE9fil0EwGGHSa674SCVQJdP+je32eFYQqMuvIOjq7EV1VhSIao L7OOtyXpBp6HN7FEcFibDrhExaTvFytUg9WVo/+pTLFytY7fjcfjrgs5OPjSSdRn3hU/DSLFT5GV dc14c4sPCnEQul8My4dx9dFAdPgsxDAXxSdgXaN2CRM8GHcjy1S1xb0NZNcRWDTW1zikKrsGqOAY wN2ADrFmnU61wVWx7r00W8zkgOydSHJRgN6eLsmAK7qxI0nGM8EkXfjgpwZ1ZSRNyxdeiOVyBJ6e wyHsWXJwmBXO85oNgevZqrJAebagPA+gPP1Weu0rT0sPy+/Q2gthuaqiHLwQgM2tt5qWLqwEVE4L BxBeyWmhmmdVu0PtT4mpG83ocm1FVUlEjZWGunLVQMsCF0s0/7ENGA1s58IjsILiFQ5DVYjMzyEG R8LO6CwwkSpF6Rb9jHJg9sR7Hqpm0LW/fo+66MqVFkkTNhwCJtvGoP95M1IDI8H6v2lsYc4BGgDu sDCVhA9D57WOc1epZrPwRipLrctRLBVgSxFneIhdMezgmZcaNbD2hQXkaGoOkAqt/5uRWRx1UpjH LcYoAO2MMDeXrK/1l4lR0MiW4CKi/8l0wmEqQBRlM6q5qtIZgXVSk+W9fbR5OOZB68K2sJvj9RHE RHd7RwO30rO10wDf8eFfwJ38ePtQuNfDh4FFTyvyCehM3fSpAnK+/7K+dHuHbKHK7YquZfr0FnWd H2TzjHEkxL7UUCywDM+dP2DxrgEbmTWdOrzYYClsKAuG6d3LKNDe2luFftPBhPC6exlBcuDFgO+f 4p1a2a9RK2UvcZA82Ed20mWy9TuwTj921sdSA0NHPXvB7gX9ylBMnz/m9iF3X7AFbrzvjAwe0oap SsQDKssEC0YM0Emnwh73YVRK0RcywyAV7INYOq6d2gemWi/N60w2KET3sE34wxweHK2nRWOsu5AC +4J6WE1n4Je8SOxr+jiohBX4Cx/9cHNlrM+yFJPsEjXtq6OtQjevTEiMLzVSJuxnrk3YL6mP/tDS /tCs7s1T3anJQgXc/uTUBt0s2jOv9MNUtsJaeZGqaMJDM75EjzFhulshE58piNnYvvTZpY6jCowY tsrRlIJM5hbfxts6frTX8xQ0jqEg+Ra8umXdMa+1oVMnLrYzbem7lho4lDAPGJZbVFw1v+hqk7UJ SmHwfFzZpW+Aw/pt7YXx1UE4Tw+AU6fdePo0G9KrNqR4yT76/mriIk0/y4nhAE5m3k0HyJbZULcq 9Yai4z8Li0IkRmMqV6U+CHbTvIPInShX/gMws0yNWB11532wsQfoxtfYgUuJzWWsngD3h1GPMCc0 4abKDWtDApoYtx55OzV6xU2bsoaFvKXgfcgzAaig0CM4DLU2IiykSnUvVeU0OCr+RrBijum2xG/3 TxosWiBOtWaBSwOGamlA4JvSrk1EdCMfUo5OGyeAN0IQu9du6MJPuamUqAGfYcC37t4FwKsYm45B 3cUW9VZ1vXnyZaiL5zna18fCZO9AN2CnkbJIF0S0fD4asKUhOFPnx767mz1b/SFcMe9E5VY6R23l 61fA8OXzAIy1Uyx3anQG+AEPWAH387ZiHPQ+tnsN+rcNWuB6tLfT5/uKXy/sHbXUUJ4aQHYdEJHa hxSldmjBQe38zxY7u4EuSd/b8+l/gnecOugd+8aKtYOn6vmDmdUHPL17ETjWl5G0myzPdKtbifit STEdZ/l7tyFddaZngpo/pKyd95AKPqgB0LXbLio6z+AUC8xepOW8GwyADkYJp9gf1iipgRQCVitO 6A0zY129WRjwLWAlfYt94lNs4RphZlAyOehDNVi9tGDMBsjgkpfDLj0TLGfXUQS/3hhdFaXycNPe sRdjFJ0hhh0WXYdWXtOB4D2uCFXHVmq3KdAYrz2QajwwlFxWWK8O/BQghCoDynSZNZzS6yMmRVPp Sh3oxFZyFLWKqUp8P0wR23F/Iv16aVzxjy+XfW4u3gNNsK7Ae+yajJHocOKntA49AhAM3GzMdc7m ZzlMGw1NuwpMrJeazZlJf6qihqrziyaFJEHL5/YJ05A76R5asANdgrRlJIDfWf/u77ov5yw368nD kYMgS48kxKch4NZ50qvu59bqZTgR1QcGU1J4wNz+bItD3kTlOOwcqVRNWFDaFekIDkVzQu94AHT8 Sc7K8CI09dZBaKMyjSYPlvvyCUUNxKIIRUEtIxT1r6Eo35YARflGQ1FQieAy6rcrocNRww1asORF uKqxSPcwB9agx6em7/KL50++P1sHBxvL+LHWRTllPMQOLIy6WxjqWeuE/AhcJPDTLdB/3lGaM9tg 4MWhL5TC0wqABDHcvOiY9CZRE7cXnAvy6nOTDWD1AQK9LpA5NFbWw4cKMZ/LGVtKxoPhELYqsAAE LgZtai3AtwuSatywTejmljO9CktUhdnO3e4z4/Khimdgp+RIo2644GkSuvCcKWBaK7OIjFjpcPFm PXmlTJu6yivPxrkShUldGuABIKGFtWDbAgR6vGGbGRiW+qdYFj+kSYHb/RkWBhagHQCRx9I8YNS0 6hx/7benNKae5RvyzL/BDT3wfbAvH06m6LeawNPcAkEL0DXxyFvyjAlV4na4l6/VxIHDfOHVWO3K wakowZAQH33K1PoSyrHKvkkUy6F4XBNvVY02T8vaV8XPbOykXUIf+c249n3+iN9A6eh0rolNBRLz dx8rcEYAlxy0NJgD7FkxHlEBNlTVXYDrAO7zw34l3uYLnf3CUgEX0OK8MJWf/rLu7AKpy28R9l6Y 2Qf2gEaB7pAZqhAEKDxMLOdwrryyOpWDYfp2gjijs5khyKlyH5mYDbsRP5focg/2aLbVb88GB/b9 08B23i6oqK8GuQ+kJ6kE1KQyZ4HhbjCEKmupRtBjWQUH35sdtZbgM2qGbYKh6pSgP5qAbG4yBiau H3vfl/VfhsTrpoIJU867csT8FBOon1tRgXG4UZCA5ca8cfe6tD6PnIJKejd0n4kO06/q8KQHABQT nTm8rnfnLd9iM9q4TePdqY8eZwD2sIcgs9rQyDkHE4dF3iM3s4mpszzjDQYqYSt+n17jZz9Stdsi 219aRzhRTX1At0DWzzhjqfbdpgJf4DDR5ecH3aHQ5ZRyM0K/yAdJGaoSRE8dAOKMd+KXL4jXYBeq /9/QRRwFRjYFBuDUKBYLK22ivTxn86jLtq4CLBsufY2I6KXXAv12oOc28Yqd8RnGgq2qpuPLe8JI z3+k8VW1vULdnG/VzJu41dkKUQR6KIwkhnwZT3PvEjt0KFsP+u7aezenzHKfdMTYoV+yGUafznBr 8mMV7IYY0uqXThV/+QEG5KiNean+3Tv8NfHDCbu8lEyzk5He5SFt4vTvb/P+vcLgHwAmOaKvpL6c sFCLFvhZj4Py3bgSne7Lh75S7iJKWi4BLXbcHveBOyx0UHKpp2nh0D5w5Eeq0l5/mWDJOUBTUsLT L5Ad0GMFv19qXDpSDBJdEAJ+PT8Y+QZ7EMcepj/cqnWeto7/aA/BGINgW8rEWVHVTdTyme40GlBt tVJZ5RtPuYgYbMEiox+rNN7jRV1MA284LBr08h664FE2Z2kpwe15VW0kjE8wDkQF3YoqRJr/iEXr Gjr2Q62nfvwYMLjK2GvuFnmluLs/JPg8jD+jM5yyh9Zcady7N0jadfxxBwwqgORtoSC5FNZIKQFQ 1Y8Dp+7nCIFkYArJxnxVD1WLiYN9drFRTAEp262e2wUoyNU4dfto1i6rwO9ECG/qghAAwhb4Ud20 QETZEpRE52ZzovqEE6oDvCjo3qNKxDx/rLDq5mMMUFO+6P7+Z6VZe0eX6hPv+W24AjIYeX1hyEhP LXLSZCOj3nB0jn+iVLM6NTCNsKX1BxjjQH7MMaoAflZ6cfhFcQJJ2ACKjlfnymTBeiQ38U3MAlT7 q46BfA0P7kZgIgWaSANsJL+xkQhE1Ick/foZqB3Aa2BAfCzQ5dehw28L1m4NMPc+iISOrqgu0fKY JOOsaxI9g095dWoPc/RU9LUA/mz0CCuzj6cZa/Bmc12+ic3YNug3rXL4La5NhdLGj3hq+tCwbhv1 XXuMMTZ03L0b0RS8Ww/7grEw63CpXBVqmI7Ecrpzl2U8w4nXyD45eDNdLx2uDjS1nq4I+uzLcgEY E0zMdO/+xi+vQXl2At5nDZOUjSuybEPBPAt8Ap5O5NBYBxZGnvDdYD4OfiGs62AwqxPHmRGV9UNO nRHZOFhpM1CdHxecG9siXe91IxFOMhKHUlWEg7+EL31im2elGXS3dw+xQi9Xw5n6mkfdZkKaksQb zy7EqcYolgEMp+IVGH6hAC3Z1DkzzNyoTsjwhat3FtEeGnDlSgP3AwP/ou+MP1N44GhxbVR82RVi dSYuDEmTDYquIk5OfExOxEAzX/VeYh48sjp8No2UYQGgPAdaoCpP+1rlNeY4N8BvNSiBioTcazHi QHIhj2BQDk3utT+kP/uAk50mjLpCtZHUru5r4uoLconlwrRCFF5g0xQvVQdXB/FxIN2LobpKQVCT ZTwEy46V9xWxv5/kUumvVCWSL1URxevaz1SGByVDqkKHEPiR2WkwOquBTVR8Yg1VCXGWGZ2o5jPX 1cE4dUisrn9yLwaXR3P+01LOOjcJkzquUfRvZsTxUOKEe2+wK5k137Fyay/5wyjyVNK9Bfy/X/dQ gh0VvxXYUY+a1qPv6Dud9d3pMDZDbFFtcHZo0jliqwt0wFl7yqkdxVs+6GNo2ccYV7fPp97R6IfI UXAYdPjLumutf8dYG5n1i7X+bMRDrAq0cbf8B1qkyEe4RWddFohKcDaeJg7Nrf51trDUXOsvc1Wd 1GpITV+Kl44hWQuGI8Qv/FhVKoT/Lhqri5qyz1G0VShABZWvwAIBx0r6uqC8li7oUJz+tIm4LvZL sN+1wTkvlR2/jBMt2ACn7LFU/oJV/wRRHBix2XXb1nUG/IZlCi+RamIH4T7DFxQ0AK+X+zLpRsDJ LbbbcKo72YqF2OL8m5YawpPd3Ys48glJAgsg6doqBvAFMBp9JY6LfeeT2uurwmhzOvQT3Iqzs8tr RxqsqXVgSXAgZt2uNhLrQX+CaO3yjbMH3xvsQIv9Ymx1piauDh4KslkscqSVeZwD6EsACdRGZvK+ CBJERylDR24pyevnY4JRgm0JPib4VV59zlSUoJ10BUdJ3NSbxB2DrgbrLmLLUMWkWBxjly7fqFZx TMxg6gPL9j0ajM10cJ2y1FkfyvieLNdnGYwA4mOiFQecVGFZBHUXBaUL7Vo7fjeDRJ8iR188pF0H ah8XAhBTYU1thZWrpCqo0XXXbueDIkT3BRwqHGgyxLJqtix2qsnda8Gexu/Spx7GFnMvFEC3CEwR WHWQTR8LksjOSLQJI6ldeuRFOxDM42E/WAjoghPrVIFbood43B+90kWp9LiLqeMhi4hmPSqeW9V6 GfeFpqrNPDsL3R87pIiDpzs1HXZljhUkpdYvRZOh4n7uYzHg2obTjDW3l1WRqFGfGIDDVFuo/Cwf xz2E1UJomht04jDRjcJLwZ7GukJkCVvrKnytxS8Dw+B6gcWo4KgVgRou6UvrYW6wGof2zTA690sx KU5hYzq+1mi/qVgKUXQt0GyfiLdzcQ7z/mFXE5r7WVOqFQRbd4HALSapJsmm5NJyEhbUKiCSe89D 4D8Xgydq+lgjw8ysW+Op4XDBKF6Z1gY7OGJWoLDP+IS+JlMgfCO9T5Wj9ZarI6g7ucEGZZ9HtQq0 p0ac1v7crM3EAyszIW7KRoc7Zf4tVTMhRi7wbBt3NZHwwGFhk8eejoaYzObS8yw8sWTjTJBZ5bRG ZhVgswcRo+/Z+RmU4hgLn8GFlJkeXcA+tEax5lGq9aGx2oSoELH08BTXONZEBXE9VR96bKdUdcTw LfPDhRoOsFRO/y4dtHbnP5zVRJqXw94A0RnlFomSS3HyiBY2us/OmSbfz+myAExGPMx5gio/p2LM cTaQi2MNxHcbtMZR2956afSikpq3TVPA8e/UvzMyxFKdRUh4sapr1b8vxPDMuMyNpKkbwgDA9dPq aq6m1YH9NNUU8DNVzWTM9EawZQ8BXlqVCxVIx0SODsGi8Z7jzTbcPGGhJOY0BThmIkVsoWjhm2vg NwTF8bKdRY2KrgQYtSJoTz+QDOv3yLTeYWVzVI4CbWBq746k1lNjQPk5vA8cca1FUBYXF/1W2UC7 SPMbb3Wckr/hzZpVN8IBFR7AKCwewrJ+NRrj0SbfqDvePIkSRyTR3Bz7tCZdGRl9XQ28fa6KwCmG o8lQl+6v54zXb6gcoyqzEt+fwwlirEdNOGK63UaVJeqJ6Z5521vGXWDacrHiWInqXFfbTzOupiwk 4L1E64fWVVObr9ricDR7YR/VNFgKpITf34zCyvAfkFm3j3bhyqa26EQ6SdW+YlSKmvwVm5IZ/g7u Y2IW8lrUUL/l7PQDeyuMYlB6q4FDnhQaXFtkQ7KiJlLNmhIl8NPsmNdlNzhyBGIfNiu73jx1/RSJ Xx+lxndDXNlZdLFsepnhW2Zxo1KS89Smw8iLjyAp1twuX5+6E89tyuhGBe82tBq/Ed0GoSN0Wa0m k6pmxq8t0GLrYIXvK0vJXOgpWURWkR6U/nHYpzrHfq9JL8TxxLA6Wq4CNVrluODOR6c1qJ6mAqeN IyDqIutGXKqb64nzgxYnMlT55pITvy7zny8CHM1CM9H0w3UyEy3aKn1WnWy98jSuM4VMdd9GIIdo rTEaX7dP/mW6HXonqgAE2OUR+4ZX4A+kg/CH6iGoRhNs0gN0KJHb8+sxvApemmG/dQ03j+3kNoJ1 0Sbqd+PXENch/PL745ffSQ+MYWXNunMwUL8ZLKU5FcU36l3mX1agATDKDkpxvZcW/fbpMiIZSKqa Rj1UpvUBd1YMCkWKbvQKTo5BWpCDpsXDPPfkt1RVEbYL9OJAK+CoxU2mvbx+e10o0e+KwD//gX65 QH75fdsF4C5x7lUf8et+N/qXw6Z2PVQZLnRffJytB1jfpISzNtU50BloCFXTATeP7USo4SdDlNOe jQwXOxa2cKIbitOFf/Kk7//qhudsHDAyu+HKHu4xkLn2VVX5O1FZxsMw4e12sZRgT8Na5epWLP4A qz7Tslb/BEOrHK3boaSIY+lWTwE8ucwc1eqEm7qOdQf0AVDQbMjBu1CFCml5jFFV60g6AX1GC3O8 pRUdrVSCy4+LKcEK30eu2jTZRwqgGRZAxZIkOM3O4xMZy9rHtJAbuQfM/W4o8FQvSsnLGMfsUiEO LqmdqB/Aidg21e2H35g4PfYv85xx7P8C+8lMK14NatKXXFyXo8TJ2z4C7y6Zlnb3+gSc5v+uppGd u7QH3KCh3csr5raeWq1ndrH5nXYcrMZ87V/okGyzywg4o8/og1Xy8+CAr90gSU0udYyILVKTzrCY nnhq9E+mFCT69UBTgPsU4cXq5o3aKpe+M9Fe8m6+0qoq0lTIid7S96HyR/kFimr/tPr83ejDy+5N 2ufyju/+9+3t75cmNDtuMvM6FvSjq7CkusISzBjge9X5AU9jOOrHJrrQobGiLzVC+drrmRfxWdXm 8lzbcd0Gqr2rsbxog7ZUokWaAmFfnvxiJ7oB6GtzdFqp8TVqNGh7NRoUC011MUKKNY3egWJh1pM4 EfBO8HfEIWE3OoqCWcQBrd37AuDQNiAtKbbnlKn06Byn2WWoALWDSvkTa7/ldt3FLMBFrCI7mazP HV2wKLcjSzv4ShZD02UMUAq7cQ8tm9bYF5DfWi09M7qrgEszWzrdCe9XPrsdVQAsceRiNCus7o0i 2BWvUJC2QvlZf+Fr0zs6+kms+C1R0+zU1O+XA86aPSZBx81/cGo4lAjcaaoSEnX80emzo9Yqo5Ea 2JRu6Vtudo69Eurv6LV9qMKZXxHSXE1/SsHXtfwb644Dmw6LVA1ozf/IumODNs4op36ZC+2dDBdd EXgX4j+wYIbvXPhCBy4rbFGltQT/ALC/IMO+fwyjf8VZtejjwLCdrNGPart384Rz0GfkDbRlpUJe FddjnSuZCHGCC6J93/SZ+1xNnbxJ/OE0xTr08TXy4Jg5RmarCN6UTOhWtb5NqOteOvxG9mevopzq 3lg1m3aSeqrDefg5yhgTf+nDKavUqzV+5LWjUkZ4g0JpjWcbaxL0uPb1e2Hu5nRCN2vWjxx3xHqq qvj9ddC6RmK2ITbGPp7p9NcBhlh2Xe0/w6rAj6pTF2dVHSZ6sF87exIqUG4b/LzWs7YBhDyxU/rU YEeWQ9jtKLxR6vsDNd0aHOikKXRUfhoSVUa2rHcYSDfWdoH9+yjYKrKeqv4c8oL2FNhijiMt1TC6 FKMaelQZqJxB0pdk4MMFdu7WG/ADcK79W78V7DuhvJLd5G9f4CR1HP+ptAYmGDwMiIAzYdFz13Ts PXlUFd2Achzf9gGzMFt4VpxMC5VQSCs1iTlKcWBYf8pwaIlHpKbjiT7p4ixigKDixR+p6pCvR+jq 6FEF8HvARyqQZFoSA02p9k66uXw6aqVm+ooCoUVrFFu0gaoViatwTc2tlR4O8I4jkhaq3Ya83I58 K7bJ8jK9v13bM/2aBAxjobt8RTc1gJqr2cenM2CLAIvpwTcHEIhdf8/7lRjOn/gvVawjA7Y2yNOr UWRe8U219iIzi5ooZvaKYdenHlN2AEdtZyr0qFoIi7eiW4xxmZ23cVAub8r6SV14SRfzj7aEopeX V+TyOgCQUxUVLTz94gJD7T2VTurpqWygFDHTI1dbhwkx2ir8VittOuEqi7ge9KNnhQ9yyj/9egMd +7VXbNABxY7ba4fidizl5VTNdcW7dzAgY+uMUFRZoaGOeCMfiZldcbcvcD4EOK4LNRoPAR0yd3DC kZb7y0Bh1SJtnjFCuuD1Epv0gIPJLntu749w0NmwM4hdP3MVg3fg5Z02TwG6kDRbM/XuAYa1Bx9U MywKcvs0le98SVSujtbPNqnDg+I3XcWqOF3JZdA+fiWDEQ0IjnQwnyo1sXohgzG+rwLRI1p31j0M WAYcDNsfyo5F1ti9XO1wvMhFhg0UYtQK0vo8NaUct32TMU6vG2+ftpfcsZ/osuzJ1+kWBtIGk39s UKqKS+CnwUV0ls/vKjHY6Sugm2LmlWZmv6PbZeuGQtHoiy9LU2/tzU7ska/SG7phFmM/rgsW60lP Ingnm/j0axwSblb4lKK2ZAMwtjczfPkg72sgPUtxPxYHww3LpwoPIiQqjakCvuGVpl3Sb6hy1HRO Fc84+GqyvLc+diNrQlK3sSq7/jr7rJIks09zOWi3BhgTN7mufgYgAgDPjTm3qO8QwGKVrEt8Z5Hd 55ioXQaA595wPsT1eAij775V8yEA1eQbOcosZ4bZQcbBZtpYA1kzxkbUBTGiJnp1VhSLgwXbI4Wn O+bTiWrSKyitWhxk9Sg9IuIGuNmM9/G5+og4uDM+d3JsYgFPCx72FjN818DJyQeItC0zUWPtvXmE NqCrGEcNIUlVeP07YrB2hWtXZoCujKZRydXwMA9wJ3fen6bq1XPXReBSxFvedSCEDKC5CXZhK5d9 SpuqjuUOBGMHTV7Yb8deu6rXTQg0lxYYlEtXlToVZSjoxWFVg4iwC0u3XqYhFoh0pT9Ueb8Jqy/x D6Of4BpV/JIzvwztUBVM/Fx4t2X+mLaMz8Xl3QJA923uVXNgDY4B3kFcnVqcot69rmTC4VAWHnex U5Iw8pMJ3RyUTsgLRxNX18hCnppm4fl+wVQlSRmqt/2kZJlxf5du42OMr8p51h0zpKoj8vJ5KJL9 eigJ8FvicatzxFS//j5v2kHXNzeMObudZpHWyaIrI3M3cv5URd0kT0QAKr5mG9cjeIWaZl1On3A2 6ODm9UxZZKovqDcmZecyurSSD4olxpG6SeB9AE5ixqKLQnUzfa1i2M8+ltPnUz9ru1tpS9nNSFXP uCwXKJTVGi1yj2Lt8Yg/tN2wibKhl3k4XXxjMztzRpYL33lPG9V2PjWu69uTl4OfbyILfacnoCFb oirP3iO7eMTWXZU78fyKsdOHu8U2VXw7IfJZoVIfxo2C61If6YBbX7MT2ncCuuGAE6FGQOCIJMBy anTGidqAgnB4UB548+JDJ7DUkznWcFMzYlwUlZ7n1Y2EhhvOFMouTGnTiQSooAYgqjilceNQoCGx SCzx/RRiNAXW9WI1Au75QzL/nU3puXsbzileAvTy+Y+cO0oScCfGr1vRjpXQnto5tVSOqaK+DAsm E15L0f+4FXbx7kaPpgxTm+yMqHYwfjaiok0IquqaOtIMUXX/YJa3L7Y1h8+/FeKU9f2HV5ispVt0 fpWJBKxhS3AFsYMiwpmDL0zTrY413ebRdHeCU5tp5r7uQPWH0TTsm6cwy+2omz0BYycT3tf9+zhz BByKV2xWJJv1aBW3X/1PhKY4DFENPAdYYa28kTCuaICxayqnLb7WCitqjnLpYOcHxQqSHCcKKP7j P7n7OWMJ8ZvigOq72XUuqLhjf/GBXA1kkoLuWCofe02MJ07O0pcYgtaz4N+fJrWCouDV4WteyEzr 8of51+jx3OyzF9VoDrotN625NiI0wEKHKDiAaDk/Oeg6g1al2+Uw8eUpLs49ePL8V3w/QHLxhqXA gIjc/L/2vq25USVp8J1fMTEvMxO7OwHI6mhtxPcgECAhg0wBheANCY2xQAjbakvWr9/MLJDBl273 5XwPu3sidCw1RVVWVt6rKtPEKnsF7X9WdbNpM7pfU61ELGNF+Uco6xq4zvvBaspQahTJJAnTYvY2 1k3bSIm6kuMr1mRY17fOCY1kCZCnw4q9NUTCxqGg0fuuTjAVpwsxMBBElILxITC1LRgurQC0l8Bv VJQyiJKUkjeRsCxZplLtCh2P7mDtindSplqRiYGlUmtyjrDc3+b3/oQ2AsEwdnAjENNdPIHzH142 AhVKJnyJaF3ymYfKlg6agpLAk14+kIAnTm+JHHBsd7nk4gTwPAhHO16VOl+ulWslT3mQuJkvSETf ZTtJHF+yxZkLOcPUAzLYZiD0uAx2B8Nsd0mUPIFZSgcBmXxa0O5/KaIMjNOGA56NmVwSAmDaU7Zb D1mQ25E1m19SunHNB7GMtQK+JdvkhhmGINYlWOdN6BosTwpdS7xrCoBCdrjIHQru8tsr0niJz6tf Jbqtr5Ion+P9bIkSOxZZBf6iDub3lOkjFmzN/Vq9xB1vVqIA6hNQ/xb0QFPy9yRitedk4T0LvEn6 bv2QKeSXY6jGwi1K8j8N3ApJrrGYhXi5fqB7m+JswhQ3ot8kCH6pd2JHjpEsMR+m2Bv25sJ5ONDG TDe22J6MBlN0wvRDjQldN9aouW6zK3cJBYpqEjlAhOgNP0XRAc/nHfyqfnCK+oovM7xVc7861qeY rq/m2xehoMyljYEJv3IG0nS/wHLAZwbKlVLUuFTOsBidA+Oy+48HZujyY6Jo8noQP4dFKAOtzqJp Uknh1JX1HVhYA6opidk30UF9SHmiohHDzfLso5QoGJ7IfEqMbI52L9hvpKVA/s/Al0iiKSskLzAx 0UaSYM5oSiARP4tk3W6SquGcLlAZIDitQ8AM+eoS95b3Kl6LC0rTFXhkV5Knvk9P7aYomORNzY/1 U6KWRWAZQ4png18fDBKzm8pYwlgP7k7gNrYTjFVOuY0V7nGCtAi2eNxuPXBMPNaDh8Jng0uAblmq zSXlMx0CF6UfmYEpHRzO58GUa3O1GDrK/pgGzIcVBSLlgUh2Ulq4BwVS2AtBqoTP7e4Ynn1ZH6WL b1Tkpzb5nkOZijhlqAsDoDeOK473TXIfr3+BgYcmlLGZaphMp/boQAimFcfEL3j4fcJ8MM+rJmK3 SLG6HiL27eXtNpw/ean5cXpCyYNEC1a0dqYNQH9kcKBml3dy4lv5jA5u4bnGLadwoC9fOnfaGAc4 vLAAIliULKYaCLiyIJUm41WuA1ZMir2ACmEYvQTUUX6/iEbfVgpIWPABFlY2AXp8kHzMLBMwsL1K C6j9kAkFrDZJJSaY5Shs7F5MyQuWpYzKOju7s7ASR8roDt45V6Xrc3wV7S4pG3Sv8AbuWcMDIGDb iqymKS9VNJRbEkAKQIJ1p/EAT/g6Fihma+RJQWEqK+vYZkuM4x1mqSg1LLWXVjPZe4nZJphFdyVf nfmAzqjdeyp/dMT+E81EepmKwIVelc/gJAjDr2Qzv3wTKKf4Gov2Z9ekkNcA7LWHpuZC6WWFGUdT 1/ei4cItmUi1ciniJpZdpBzMPH+QDBoxj671Q29Lsjm8DHZsLlZtwrRMXPap5uccKwN9WVf5c5cE XijAeGr5FI+rSxveyWWMeFG0XSpEDl5gTIkPo/XDwrCLZFk/r6YXPCqJuOWh+7y4WvsjXWp8Rr6Z lqxNqCkCcCWmLqZj1wwcQTYVCiZ5fgTNxcpNpSVCoawvnUuve2+2gbDz5dtYN9ZKYXs/KB4YxdcU vM0mQj2yNwCvLj658uhB3ER7TaxihTfR4UKwkWHXhArLtZxQcAuXRRFUcMSADFQ3xusNGDlAewtc 7Htvmxh4s4irM3Eue5nBvB/V8Lxu6jk1V6TVg1CBYNJL5CtNWHOliwNSKdnjUa8KymxB1345ZXt6 8M+JJgQjpyQLcTgEZwOe7WxnQWWsqN5c4yBMiyeQ96Duh0/XwiabZwHFIvWMt9nGCrwWp8Kzbag/ 9p5JdJJmGj+BVSPqU4e2El6ubK0x2KuGmNhPnPDtMTZ0GLmNaZCWxkkChToTxKg0K0axaxfrwogy G+VjuMMLGqM6G3CUKCzeHS4HePH0+VxVEsSbBHoSj+I056fQ8B06zVFqNHxldH1YyZ7ikAwVmRyI AW4oeE+rJmODz8FfMNgXaaWEgzYzqYPntI2SioIkETgKuDcC+jQCLcWNJgvNALN5xo18c/CigiK2 kJJcaq/qirJC7LqJYVTX6v4psai0Y7GIRKDSLfOJS0qH11zhWia2vZ+uB/ZVGOQ7USzKqy8VBdnd 13PIZ2poPOK0HkhDAXFmmHKF+JQxrFeXTMo7dzd7psHNS5SKwB2smiMoAO7dSr5klhcOQ6U9BdNZ U5XKxuDwDY9clhjm3doo6fAzHmyQ0kDbJoprrIz82jfzATD2Agw6DS8RwNQ4Rvc4T/BkxPCySAq7 A/abiwswTHg26nAGOKsbPDR4MswhM4oHjP1E4ahxc8D83Am8NXZI99hik7zbpOTdKAnAp+/gbZLp zW6/2dvtpzueuAfQng3Fix2mT2cezZJylO/cUju8lBpN6Or4ImIVTGuf8NlJL4o2S7MtUs8m3azg 31YqC1ZGWUkL0JudQ2kvmZfFzk0lplNiotsCM+a6Cl6bOIqsbaAXUrCaQKzfpOFBkdpEG2/wIJCO Bd0A4hMeRZGxeiOZpmcN7NzcDq3aDtTsC4kgFVN9TkxQY8gOdhTc1jStwBjV6RRvFY2qzS6bYwpB StJRGMNF1BiHg7XiyWiO8cAtytKhPWH5YsdP3Obo03yQPLxQ9+yM1C1OwOENhexqscS7nHzXFICb tK4RFSdOjP3Rt+yHS+ltrLtc5U+Nwj1lYIMAdDtvl4GphVlAXHPDcx6YKDXCuSfjaWCStJS9SWlu 8eFuhQdeeNpE+4q4qjEde5zJNt6bcJvcerSl5C/XzX2K4gmztElkm1al0kTwYuDTwtvamMykKXad TUW2RGPIllmTZbc23jtzK06UK3UrPWG0rD0Bh8fVD/7WOLIyw8Okz2D3gtyzMYqgi/LUdZiK6iMR hg6lzBiZgYgKuL7KIzpcKhcqK74+N1pp5xis8Cr3yqlE+s9NuH9AB3YRAZeAYQyO/xzev5JQzgeh jaGbAuyKI53GDMuPNlANZr6xirTWEqAdMZgOb8r4Prs7fu2O6dqb5l3OiuLxTdPOBpcI1bsf6XsP 3/u85MT/A519/KEc5X+qs+9B1uTO+zOd/QLe/vQ0jfkf7Ow7DX4Sb788zffw9leQxp/B248h+wm8 /dY0X+Ptr2Kn38fb5yD7JN5+e5pdvP2VIuj38PZ5yD6Btz8yzRZvf7XY/nW8/RxkP8DbH5tmW8zz r8TZr+Pt5yH7Dt7+7DS/Z4j8wWn+PN5+bZof4O3Pk8afwtsPIPs5vP36NAlvHLM56BteL9nuYEtM SYaxKg83oTlLpmUemfajH2bRJnIPi2WpMfWkJJZirVVzGUZZzjF8aebM4+WBVXXKDWXohckZXMip xCvwSGT7qO/sb1GVJE4RH2O+HqJzBeb7nW/ax8AEn8myp5mKnYXP8dbG2vLT1TS5S2T7SxxiySvl XgqhM37WtPhs7/GMo7c1C4DmHPPcX5t1jKl+mmf3PLC3jpLIXpgvVkoZBgFb+MbVKS5NfbMzpxID 14wb9ZfEXB+90AXXr7bZuVTiInvMeB14u1HKB7SbqC0M6NzHQ+D2jFsnnhzrxNmWwwiw41jmUtpM aw3wpuDVo2zH4qAqHUcePkU8n6+M4/NmilNPzhGMvrYAFbv8DiB/8MO82HA8wpJtnd1RxecShx6d ZXKXhva1vpudg90pXRXDL/F2Jnu8nq4m7g1A8piEuQ8vB16VbHHRIr5WUrmcwEw038Cbk9lCWqvQ QaXdrSK3is+uD4g+hLt8u+JmBQuhZCqLMVAeFVmU7mbP4e6k+RaDzsAdisxlMuV3jlw/wiIVUmq5 B3+Xp07JNViViPbotnYaAR6bVW1oy+axOsTEwUPEq3fWZGp/rLee6lbRTh5Km7CcwjQBEk6QrKLZ 2a9YAvR2xKlmIQVJosgY7qOtzcG5n9AiVUBqYeL7pXd0I+akAVMkP0xkprh8YyRxuNQmelnGgLc5 V8wqKgEvYmq4wkMgZn9lFs/gZ6ahbE9DhV+x4jRBPALOv0iJkVlAAlNWlSkSb7wb6k4EjqGaFeyc d/B4O49VhSWAY3Apt74ZHwMre+qw2LXEt/Yj0Aj0zu824evRZmfESxaCPw0uNCNU5G4inwIYDFCT 7KPC1Te3dcHkRJFglSxgVHgZVrSYnRLDoUpUawPr2PEHWDU/27nfUjVLYFG+AXGfVkBvwDk2sJoK U7/KdvYhVrM7yZFnghcjd+gRSfAK+HTJKp4yGfh0685dWKSowUscrocbQANC7otFUjZFifspd9Im YNededt4ARRAH+BUHEA0l4cqQM8TIFAvWs99TDtO37MUiPcemN5fGeUUaLOQmMyvsUFmmYgHJzyb xwhGg6kd+JKlwErDKFIsPJ0JHRTOLn+Md6WeKvUyqJIURVRUlQPg01ziKlNwKti7i2wVmPu4yHWQ Ckt/d0LxdA+LAHgtl8FWI2L2gOkB8jgeuES8ycSdA/EbkhOy0JnmYQd8G9kF6Q2nAosgpmLiIrko HB/jAUBm1t+A/hCPBp9oVxyAkYLdCFdpHwWuv7Lc2otGiIsDrCKwFiA6cBdpdFAENG/whjiu2t9S 7x+UBKnfZoZZJcb6KlFAakzrhMs1iCBXR9HtRie7YXQ9o9/DSaKOGoUiFOqld2/JHK4Ckov8MjpT gATO0JlSxilyhpofcaorWITNFJ4DwSLxSiuLg8zSJm3hsQ74sl6c4gjwAvKNmB6eTReBWfgGErer O2Ud+1UNeCwVIN5HCfgStdAdl1tFUk6RYD0SiNmjYzSh1aXGYVU5Tp1tx/OIuzqKL95ZJIlWCSgf +PIBZPkiBfpaWWVKUmOHKhCoG/RAKJtiFS17BnoB8fiI0IEor70ShIGsVFJQsMQZ1zfemV0D0+9X +HB3oXxUKsNM4An16SOw3QykBogkc58gdBgsD7SEA/GCPAOBaHmgOIDRefKFXsCpQodMPYI+NZeL JW+YOvcB6aCxyhKVNUKalXW1nmg5U3gl0VQiZGygZoU6A+3tTlMrT1YcZVZ5IRkS1TwDbQDSeHec o9zviP1KEvRUxiGwCj+bA1olyx56ICxxqmAaRJvQPQD/3TlbrUKthFJkESA0yRBnBiKodqL8TvIN G3RkNl+NyUwACs2RE4Yo30A4HpsVBOKs75zSfiRhuMOrcSeQd5riqZcAXS75Jrwg565bnIaLwC0c 1VVQajjhCUkm3QTlF9Cnz9FWK0iClM4QkH5GIUBKp8jdrDAt+L2VUFHA1DSCBmT7KkwUsC2uWsME GLlOADeNALTZNH9KDJC+qvtlNYjnwcRF5bx0l/WdxFpihSX3qySHFb0H0U3yLB4kBeBlH5fOVXs8 hfH9CeyQARLvIkKjB+hvN/RxcKkZfZ8Y7AkEnEcrWuZu8zJo6xKQnqcpmBEbXOEl0dtVVhbPQAF3 vnWoYJEeU2NUS6RIeA005G5XCuhEwFNkIrTZ1aY4gHQ9bTdAf3pRD1ayicT9JXhjSXLLU4yjFBaJ n6rMBhUHRh0znXAUOphEJzotOE8iYDEwMU95ENWuYwzDKGgvaF8+8/a79OrBT38WljndYB5R6/ZN Z1co38KwNLzC5Ey2QUthklbXZaYhhwbHtAXmxjQjBsIhCrNd9/2fgoyKj33n+W9Ps4u3P9XZdyDD 2hU/eBHJBY1m4Bw8qMXAxLqReMmvAhLVZeoo9V2AVWdVDwgSDBPD3oMiWZA03mo52K6qvmPLxBqR EkHnwzVBs6ORrJ7IPosyUKABWtGDjKRAVpwOICyTVaGoYPheOcYJK41rgXzQwNadpMbsmYfmUxzk mmuNJlFoTmLZmEvwBfVhjNp5hW4LOQyowlywosGEL7OrtXxC4Vlg2od4kJEDwYGVPOTLM3or7hQ6 30pkiADjZuiN7GrQ7jZazhYYvpeX0+K0BOFXohJBEx0s9GeaicI/49WN7kM6iDukc9vrgC6IDiMT d8m+HvWtRoWkMrrNZschbXzNRJKr9ZQSb6hxidm+DwfHoo1lFzeer+WcaGgzLZHar2LM9fg8mvn4 bJAP8fjTwsLbuqMv0rr0sPHVeovbaaMvAdZCHNQhXZqyDtSYGQpe7X3yDUq5fkU3/M5gZb4aTPru aEhvn4YMiNY39h+NdpVOaPNPppuUWHuNtnu/HolPt0xcuAJ6pZOG0xIz547AE44vja/VfEh5Li33 HpHNEenn0nQoW6y9CPVLB0MWEGr8AC9un7VQ4rR9G84/07hpS5CFxdC7DPY82uPVOOn6LMCdy7nd ggsPDwJawM3t/qchezvaJzoA+dZrK/3y1F4NhjOTxLLT4Y550/iB6KltfO6t2ncHkz41NW//KTRI vzM17ECk5Gogm6t07U1M7fmrsiG+ZDI2vlZrWmFnKc64NCscU1K1s0k3dxeY0gb+RgapulFC1ycH 3E3ppENyT5QeMCLeTUh8qaYFcQETnFJuE0rVlc+6g0k/Gg3+njY66YXPQNY0fne0UUmX3s/2vU9V U0fE2FwmaJ8J2nPp6BURei6Jxrdn1mkch/3GhAbFuSISmSZ0ozkQnBIsLLpOrSJqpEV4ItyE55wY OyuK+UeN32n7MphquhId49nV1MFqgDJrlAtoQ4K2xQ11gCcHfxKyn5pa+74O1qX02cafGUxqpnYt ptZ0EH2dEz21jRs0/Ggw6aen5n28wtLvTq37voSM6sjExE80tefRlpg4oqldLaaYJxleojNoo1Cs sEY3TBehQrdmuCFqNUiCsWuXRhNX7J/4MvdIvhlKiApnU5Dm4tT2XLqcJAeziFM6g0k/Gq3tIOp2 MK6/A9nrxt2p4XFYUoEHsjvcUEDLhXZ/oMtpMqOZSXOFmWT4ygqlpBSNvz5wI3zTOBuQfLsKloR0 Q5gS2RdaNEMZ0iEjsCXuMSHThlYtd5vr4UK+dRr/oK2AjPTlgJCuBJxSFocMK02pLkErcPOqg2P9 05D9cGrd96W2g0bAfbfxjwaTXqYGJKK/dNCsGnYwf0HDJyH7pamBfHsF2e9Nrfu+RAR5zgdI0fqW C1YZ1DoZewNq3BrOzSHd5krJssl6LZ5ZjbVti8CRKHitNVdVm+JjbgSO/iRRj/N4UGJcOw7CgyaC KfgMXO9oBLr0oPGtO5fWFpuBQyGiBFxEEVzjoLEdG+JuhQPujGtlyWp3qNB3T5Ry6WJWLeiQIshe HTlyfcSIgiQCSWXZRKEGNPrSbQNsl869pYaVcnQMAIcRdF4m3zAW5Fj2l5WazSNDwbRI2dzh9dDB iAp4IOBoxWGl3YGro3WDJVkT8lqBd+JgqBCctCYKb2TqabvZsuvXHso1N7LHtKwx6IGR9RkP+ZVT KMP1OZ77IS8CJQm8IudsmVUUJ4qcZxHOMLGg8xoDbtONlRciUMSuVirgscq2m91IDSZ2kUUscHHP IHJV3KhpB4OpqdHW1cHPclbR7VGKSzz4fqrWJs8Z+IwYP4MVnEYYpVJ4FZ9nw1XEZomFce8QY2iP 2Y4FbRw82g3n4I8G4I/eSZtQRIgzjpkrMoq060WJUSgMNX+BVZqvzfIb32o47SNF5ZVkmlqnZncD V5g9LKwskhwjCXh0sAAXVjpwX0XwTqWPEbzdkCUq+JRVMYeZPDoWm/LdAVZ8j94wBqFwxSftXUTN 4/HZr7RCvFxiFkQRugFEI32txbaQAySyj3cKEyTEcUMrjlXlEfRCgRt/2DvG/EXjPr1NUnTsDQyj 2gegL6SnbgDuQrBIr9J7BIvUrRcnbaX2IGvit9i2wN0MS+w6zo5RuQYSL79JqaDes+C106SZ2nVv au1gxEqP86ZttbpcV02KTWTGkghcsiqKhg9dyIIm2pfJh/cGa6B1D11oJf9Yf8jUryHz3xusmZmn lpFEo+3yO9ybww6aHTACXy8/ucLRiAaTPjW1ZrB46yL9xX61n3c3sFjEYDAFIOPlErdngUTOsezq DjEuT4EzxIao6jwvIqXwLbYHeiIpsbFGCO0gHtRPWXE8JxO32AT8mwTUzTOPxM83ZOoVUDewCogg Uw1fRpfjEHO9218idHQHzjOKeVceUghiszNQcXPJwcxqg3yBdyo2yxpvQj4EgY2y3wp2V+Cgjgaf 2ApnzhZxxpGR98/pRLNb2Z7KpdlKDR50pQavwp0MglRsBCYg+zCuDWgKcINBAkTqGZAE7XECSYBo 3q+UMsYtccDjA0apQGrU4JhtHcUeJsZ6uJZPhya8OgD5N1iE5SzYaltpVdog8OJh6mFQafgIkCWr 5uHlGS/Frs90jcLTdcRZhesELYFBcU7JVboV57YDiyqODx1KK5XLdEr6nCiYKHITuPe6QLpMlwq6 bcG/orbyqaRq99gYFW42IXvjio5Yt6NNPSqo3u/gwKkDJcMO5t220pvGLWTNaM1gQ+9Mgz1l3an1 Bvv6LPnW40sHoBiSDmTXA6Mzta/qZld8NBjNDA2XfgfymkbbFCMazVHJoZD1LcNrI1uqmHGenVOf AnDUNt5xhyBrG7uYrV8e3lAtga1bk9W9ZehX3SVE/aKDRWj0OoD3ya/KJkxFyMygM9pi6dHUOo3J vabBVOCOl8Gog+5g0psO0EEVjR980dgM5ONHg6mioouYmXSt2mVntCunOxr8pVK3TQf6rtf2A8jM N3iAh4XAo8ov3IDb3qnFNQ8rURW2xwPtMaLMud48hO+SfznGw++8Za3CQ5S0S9KnXAti2kA4UMVe vzgY5DLSnSjjuEJcK4lGB8gtpSKidQ0bxYy3DpEgSw31AliUhmjM2+LEFaIBrElKgRSH5FZSHTGv 5FQoQ/LF9axJKHjtSBc7w+QabVunNLGA7IQtMe/NSPZCBQ8kueEAVz836ZJGlF9TbYEqE5eO+ZJK O1biytYhwAjM/CwuzobFyUGeDUVFwoc13QcDGxbtX9MdkoNr2HTDXgoKygGBaaihsXfM0GUc1NTY 4w4e638CewKhtwKLBmV4n58ZnFYYcI6pyxbhGfPsnW9lcQXCdhLyhk1MMTtJjzWtcGJQYzskRn88 UtuAu3TBapfhLa4JX9ZUokgSOBqGAUqB5hbbIpTPYtUoiwDfoJ5QcB8dICrZDQXgAo3aJoY8EDOj UobuAzVWh9TYUygx/FMmChNbQYGrBuKZkP14xFUDUsArqy43SSttPcxRGPCFxFDAnTMNG7PJmBpv DGqsc5NwlFDjcLjAuNl8kOHJL4MFGk5t4dEdniTEML60aNJQRsUQqf+cyJiCYHZ0RM2Pe9HYpjjk XB1RW1/EIQcZtbWbqKmmSSuBBxHspp1DY0iBzEHOAkwWoIQn0hOheSbTHjNLYu2xgoj3KigJDRW2 lZj1SI3jghp71PgZRqT7E8kCowqAHKpX6kxMnNrJW7o0NY6K5pxPMjGzb8hOD2Eoz4nSAxtDEA/C Y7PDmIQAN0Ja4eEzcUg4FGgQIUUN8yb4JbujWJBrUIaKq4BKwbMBFgVhZkjEupKNIx10KNkWf7OQ 2voB1R4uq6btOSQP2jjSbVxu4bxzG+/feNxe0O1IbmK9AN2ZUClRRheTw0OY6BSbpMIFepVTW9ek toCzwEUm/iYamyFFRFXROChoi2MQcqxw4z4IfZloC1oYRvc4AzAP4L00UFA7nZNBSEmFwrmLWurs UmNY4Udk4ljcNJUDhUI5A3JqeUhXBuOC7uJZ3MIcGwdXXNReshssqrXgJI6AIPE25NeBuAcGTN4/ cRmvTVzNWIZ3zRikbiyXWJZ0JmF5355bLaM0HQ3X8jt2WNn/HU21AA9csi0zUVJLzDC3PvjYBKEi GsWio6G/o+JkGhOZLowUc0lY+d6X2SCbuBP058NpDhbk4T4AV/viO/HmxKW4BmcuPJUyLthvoMOs Wc10xe9DnVCMO9eazrgdyEAThsuSM0vSXbbwZFZ78lBnYXnjy+WA3dY+rPggtbIUtNN9GjLwz92b lZw9sEnGWHgwpHSX68zCPI2sTg3XSEN7glOBzvZe4RqJmuuCtUyzKcJ7FnGN8prst5IbzUFVJgEk LK1ArMDLaTjSHJPf+GFxZNzFjdB7jyc42ITJNtDUCJ4ps1Bdq16QszB0vyXq6AZmBVpfMWE1R9c0 FZpqZvrh1zmj766Zyqdu4MQTkDnymvREMhC4o5lM4PuDFIWjqc9LI+SGnKjZICwyYw1IbsIyE3EX 3XxYidzHeOWLFoHQII808ApvGBZ0MG0mgeMFU7FNZpU1TIXDVFyYytTzD2fAWQVTZRl4fWG0liNw eYAPcZFAWprnrh/QnihPRdZ5e7Imi5BrL3flSAmjyJFJpy7ra0pwbiji+jQvB9D5HvwvwGteI9EO QrPUwmh0wzAvHuAqwKJGy+wJEQs4nTAQjhFA5i/XV9FOcMq6oKjVTbrEUxKHuN0TBqSPQEhhqQiY SlSzoKiBRFzXKzgL5IONddZCoLFkkKXZsZ7ANJ8IxwpOu8RpM3xX8rk9yKbuhw3gOcuM3EgjpMeS EE/0aOAqZsI3bfJJSzpwPS29WqIGv+K9k9JNxnlQ1EK+Yfmm0SDuCgEups1Mc0KBpWyAsh+tnM6y K+O5Fx0qoD0bRTtAWqWl6TPklFDRechvgrBMGFa2mbAqUxkQrTUEQ60k3voEa009LGRP8s0liL2l dk023jlvy4wS/dzDElu4xEFhHHk4sv1lZoaFIa/UvOIFN1Lo0NsdtgEYgH5lIp4HiOcVQmdlxJuJ XnaIcZmdm2oHWsBNYZwMMNPfaOJ1RVGDdPDwUEzpm+UadcArmSUkhAGSFrX7nMkntGPVlpARkjDK K7zmm1ql4QUakE85W8kogizEU454qnC5s5eV0pu/W1LKkeJghDlrDy80eoHJLadQwUCXr9EQlsvm HjWJ5glwxiMzGCCdtLvw0wuFrO51SNAqC6MLbTaQwPMtM5BJYIgA6wiR01QfnwoT3XxaU6YBtx1M p8HARgtR4oSKEe7WYOyZj1KIJNGbaj5xlPKaSKJAkpjNgdL3fuicge2mwL8tD8+awPCZ0LAsHYkq SXEedkkkk+sJkYjckEigmchaKxUMZ0EiUyARFhzrF8kLzghY20CkAaZSOTwF6oG8kLWVIdOrCPpK BpM+rB88FXOYAj1NM2T6J+z8PUbX1jK7Ss7ajb4D7wQcibUBTkZhoOuDeHmCzu4w0bQntzHv97W7 1FHvNwDJNTNmchSi9AV1VxQysNfAb3OUiw6aQvXDOqKQf3LpHNlp2uQYqYT7wiiM75al/gqP1rt4 RLu30WASqrCwVWGFgalBjqk8yplc3oAF9BCoHIVnhWYneG5kQrjRKAJTfRAu1woMVGEuDr7LbkA7 8QHYDvepgatk6/r3JMag7JsKPD9iDdh3DJdRgtCB+s+D0E4cg4MUGXngtTUC8mtz82OU0tZH/0zQ dYszcqxgpWgzL2jz6BUomkEPRAcTBWQE9iyQRAV6wM9CFN32i+gWfMqaEL4iXL6SNv6uwvdEd8FJ Ma9k2h27Yj0SaerVsV2GmymT9YCKxy7whc6NmcYQtGmwYFdbH+oJ2RR5XFyxFzdsSznGIUgBkYAI iVikpVxS0YZ50mYBFGgAnB4GjZ7wserIjxTFjFknnRfsMTVzYxXawPgKCgHMqv6iN25rEI4RiJP3 9GEkIAhUQoMGaKDMH43wbDSYpqUDMlzki+ECFhR2WANJ8BANF15OQS90IBvqK5l9S8H1AcdNB2JV QddyIGZgwyTG5wlAKqVG3WsQy9QAb87rMZqbSAIFCsRyT6Zp4cz7xNxk6QF/ABYA6codbChK9RKK 9ogM6G8O1g4awl+wMMZcaStB8ArtYPCYA7B1EyD2hYSIAyMFT1zO5/IrYrwoFZeLoEDpImFvDKVL /c0e3qGSSLssXVHp2OjSjzDg4K8qIHPvKXu12ePPZjDw9naURGEoRjN7HTUVb0aMBivEmY22jq5X hIA3UD5gtoIknoBOcNAt6u+IvZICHSHA27IbjQVkrTFgMsh4930xTWTUgQh4+OKgTN0WoQSHFTMM 71AdemiiG+3UbJFhLIiVqFHO0ltEJgNfFBegqemXOh6Nwm21PDluo1DgUbuIbYJAiG7X9LBObsAI j27UiCNQOuD0a6szu0Yd6mHkgDc326KRiJ8pjE55XfU1TiMFzppOUYGQ9obfFTlBRKjR12K7t7Mj JgScKNwTuGI0cZbqgTckA1b3DYiiayxp4holC5duS/3kveCesLZC90W+VBunT1uVF61DoLdFirvW zwe/xW+IKxweJqicfbDwwQQzG5y5FRnJO7c5JNknXoE3TUSpxOGZKypp8nIjUG8WwGaUi4TXdHzz fVbJGA1WZR8PFnHhvLKBGI33HfuWL10aLOLfGexA5r+EVfBoNPnVaOQrMU1EpdicAnBG3gzwvucs 9VznEuhpmu0TpQYvr67B7jiCfIMVPg5RVEcGiGqQYasdSucRRhNAmxdzj0PnYEFJrGQo183PmEzC YgJxBE5bjPLMzCpg9BsW5KA3uCuBo4W2hI3QMQAdDDgTv8P0B4GZi8bwMjR+wLZht61Mdgh4fRy8 vuwJOhuZjjFyWXSAqaIXV5rC3CxvWvfaNU5pcuZP5C8sM0yXh06bkihAozK5ljiY+RayzmgxGMeB apqJfNpiZ2FpKBlOPUBfCvN6xXKglADtI8i3ei9hjMJDB+F9lQdM7ZxTcBhW9HyIz7/hc1RCHFzr C19zEkH5kg5JdixA4tOmknssMkGVARYrfmVSNeTkgZlKEkeiikhq2WgldPyHKI61F3HcaiyFIqH6 3YFq2y0CrYEIKED46TMJTUtmGGAtYjyRTzYG4EnO0Dc3EbFCujb17KzsWhg5FH6uLpyC/oLsYY7y bO7IYHdRnSKRhp4LaMwgWGOItd3jRPpjYJ9hqaFWBF3CZaK+U8lu6DxLK7MqsB1QQAoH1WwKFrsu hah7OGu8wbryhbr8QofAX6xFVMCgkCNFAztXuD4wtYuobhgb5JvTRI9tios3ThyKoC3grY2fHUX4 OQtF3bXLsYB5TLaFgraFUG9BQlMLqhpnNgzDl9Qr88BgbXLgtuaaRqHCkqLwjTDEooLoiJWupzDE W5dEdCkTkahkQ/t0p5ZEZujlpWMKiLRxn8bVMWThLZ9c2tO7aDAwkFsaaUkERI6NfAqstUXWAsae XKAFmwOhZSDuSL6ZF4vIRPkmBaEbgp5sVkZwgT/NyD9yp3R0fdHR7pc8yaGY2jwkh9eucGbStdwW V+yYlgpvTEuXNZal9dqyRFcang0S8GxW4AWuSlOIIKB2TNWPIsh+I4KO4MguXac9JgVkQkEBVgwp ntsqZ4x/SBRgs7IlItq7hE2NJxHzd+9D2jlM3pX9+q6uAjThQxfcScSZfLAxzXP4OmxqmjcR+pao vSfk6rTRFRycOkNRHiIwRulnA/diuBhhg7cgpBUKxHaG24YCSQ+kBVadwqhppoGjBm5lCRI6YSBh KBAgtaIZViVBRcEoTPoibdG8Qj4FE8AlWgtMj/YHehKDaauJdi1RmEF2ToGgpyagq1EwBLiCI6tc qF9WkPoHHsh+0FpAn0MT/VPoTGcqOK9dSLpS1AuEn+mIWk43TGzUtNUdm9CiNgG9gKFFLSg4uDuh O4WVMHEhgjCeh9VagcYPKPcvocGirxeY7F6OXQQCanAfh7QAA4eOCOdteOYSEWZtQBhoKDnWVabM jqisIyGqRYgsytpFmjWrCfoSFchufUK7I2qnitEVY3YSNpg9yKykCTRdrO7UA10A8u2amTFtSV51 DDgTLyHjVALDOa7lFo9cQC2LPahMHuKe6Kn1T4neonog+UWCQbUbGIEDK9mOEc4RqSLuU7ZxH/CT RoDT3M/OXIuj9+0SqWeYXALkzGXosQQ2ba9lcj8A17ff2INoqy0kanzu2/q/8vn/qVd+cZr/P/XK r03z/8bUK381zv4U3j4B2efx9nvTfIW3v04E/S7ePgnZ5/D2+9Ps4O2vFdu/g7efgOzHePsz02zw 9terul/F209C9n28/blpAt7+e5KQ/grefgGyj/H2h6f5CzlVfwmyn8XbL07zfbz9BaTxh/D2Q8h+ Bm+/Mc23ePuL2OkP4O1TkH0Wb785zT7e/kIR9Jt4+zRkn8HbH5jmC97+YrH9G3j7Kch+hLc/NE2B t/8GVfd9vBleNHz5HeSTqNtZrLrsc6PbD328uYuN0YWMf/yyb7nd39e+wb8zUD9Hed7bAAzcbfgp aE19TllnRi3O2NXGeNXoQ7zdnum67+v2P72aUV5gkO6CN/XYPVHoSI7awUsgGje/zdWk84wzu7PH qScW61xd4nNH7uYoX667o+irXuNXn/6itQe4mmkuX+W472+gLl6Rx6nze9pdJImZ5nN3lP4J3x5p aHHnO22gLrvP8/4C+L2paDEs+fNl1WTT7bS1eu8ZZpc3AW+77lTtpDf1aNSDMAy7e5ynHmnoSW9q SZ+1XtHbq2xZTp/Oeh2dtO4WN+vLr1lvkJ3bk2+xbPdw1mvMcDf15ferk4Sl1qFHLZV7HJBpXcXA JlTeXO1Tf4NDnwpw3TWdGa7BOtMUZTdeVq1HkGxAF35uW7zldhdnczzLp9otcUf/r+QoD61S/lRj LKJllt3TOX7afV5mdheyaRR1qZ7VnWcT1ttBrJMuoeuVVnenOXGKbmOl19iJus/YocvDYQdaYqc0 7CgKvp77XfJQyk61UJAU3bZFZndEkCVFUd7pqK670hSg7fBpmaTjDp9Gp27bySosu0d5Tkmnwqy2 sUqzM7VlF9qgB60xRGi7gfKp30V+WXaRP0/DDs4C2+7g04w6+AR2SuoOQnUAt+rQ26zbGLRTt+2E y11SOSRSl1Yyq+wcIWY9aIMW2ka+uVG3rfeMbV9wxsv7ztSstCtNI8XuiBwD95le3rPrlvl/M1Cu 1D3DJT273cNV+st3wlv1M53/cqC8Z9Qss3Mif6ezDkEa3rJ7/C5LU7M8+MvyhivGCXMCr8LhfRiY rsSV+l4vhmF85skqVK4ChekrXocscJO0TA5RybYbs3j2A+6suP0YRcNo1eJ5cCtnBu76n74Fu9FW EreSM1g9c+IutbtVaT/GKpqZp4O7jPHKM8+4yf2idiLT3kdVpmWRfVgEWhqe+Te66I1FuCrtTmKK iYlFGb6cTHkBDTA99mIlQ+fRoeRn/iXhmIv7dAi3/G5VXB1jTOzn1amzDU+BNUxXlvsNk1lLzpZp gaWIfBBBJwE1vz0DtTurosY8fGbG69lqChLjzIeYyC81Tt+8yi1gugrmnF5beDx9ybdscHvUC4Qs oYeYYtCFh/AsXUUnaIxV49zDIjpgguo9lnBaWaa1iBTMGihHZTxcKfVMotF58hRN7BRvzTvRCUc/ xjvl0TFvnxmmdFAVy0WcRgomCD5CWwuzq7MtQUpZnBFSyd+d7hD0GBErppJwzIW8xN/7Z0A0TNU+ 49FXSli91RKgMQVWdbFBfSoWIUrKeirxXVlwlZ1p3n8ytv2TfNqYrS83QjqduU9eR+T4atYxVoy5 /46p/vLh3+FN3hgjlei8Z1Eu8+5vgwGfJh0raPLxiD0effNp9UKz2TzpQRYo5qSLN/dyXIc+D98Z tD0A+O5DQ4gYj4psZYVZ9e2QvrEnqjy2nfH+nvAr8/M7AtJ4aOTbpDk02ZuKxnsm+iure5dNO21b w9psoZXeedjSm9/8bjrvORgzcUys+R25ZNe+dFaYn/CV3rPfQjLJGCU6REM46jkUw+4JS98ou55J 9cpnePkuAuX90269xjvBKqJSnj3oEa9/6K4oWd0dnPU9O71oMhw1rOK/md7LJ25mJr1cxuuQRt+h WHrtkTrCXzHvrTB/sdfeshPvTbu5UtNWJO/RnH454EAfcBHDrqMF/mNXuTbE29JWj3j7B1NnDy1k 7B2IyBvu8mkPZ7u+U9ud5gXJ736i5hRJ00ZAdKG3SZeskDR6OIPl/pB4X4mjnl+K4khA1jpafW8Y 6/118de1396VgRc6Sz5w9AlvchOVatgq6nbCy0nQ6QwYvOxMba+8OkL8wdTeCZSnTd2+Bh/TfoNe DENjatfx/96mvFfrH0CDn3na3vJ4h+ba28+Xg/NdMewrdldSvNKn79NY05nbehsNPnrE6/hdqxss yM6gi0x2vhco/w7xLltfvGnTX6Sa9SStXCbdgMhKZh8rkg9WmzoLrAP9COQLF7ysYBN4avEWFO72 I+J9ozc/Il4PTYHmXHLWUzQNvQX2tdR3Y4bdl7/nUPSvabaStun9eBGCAm9Gt3Egu52onyH7VVfS lhcZ+I55UH4EDQXgXKPHKV0JY0jutHP9gWt10lFzrmF2vOFXrNZTj8ac9SFzWzy0xXW7jZ/984sv z8zyWwfXk6599mY6/qsAXG+FA94jXtaLbUPPWY8cDl3SeHod++7xaZ94exGX9npqe869T7xG55A8 0pjaCWFEIv72kbH3PdPUaLI/TS4dd0kjDE8dIrS1FR6MvODtVHkfm/Q9wn4d8nrIegbch/RGq+53 g01gQnzHrbY/7OxlsL75Kr1vwOVBLzamZt+BtG+49B8G8vyLN4b/tEV8NMbtfxr9f43fJvRtcIXf 5fHU05KxNRnHjiYlR3M0Xnr6fux+HUeebnl6PvaM8X/GZjHOi/F+7OfjsTFOxu5oXN0+t//Oxlpm V/Jkw9jXceWZ/xm7haRp8fj2aAzGU1nnR+3k3gI0HgAC76yDJB5PDRX+Xdaqow7tNIBkuh/nX8fz sZ2Mo3ycGtp+XBca/JXC47jWimF9O/M24+mMZqPeavV4PBuPp3szW7LddXBb66O9sbLKc+buzfXO /Jaoy1Sr7Hy1Y08rvp+u1VyRkl3ymGTwY8fVZAlOarafxGr+rN7y43oHDO3urXhnnpMgltXbQ5FE 7lNi8bvNkpXr0d5KouF2pbJSvU0KSTwE9ezutY25NxLVPCR8b8Y7nq+qm3QcbWqA+AYh/h+3bH9d aUN4sYojpV7t1s74CItximl5pLF3pU1uDWfsefhXHzNP026N+di71dY5rqa2HXuXRdVpZaGDMbwC 387xLfyZeuMMkCzhkibj+WR8P9az8eJWm3rmfpwU4y+AWM+ilc3Gm1udSMCfIMLHnibr0X6OHeD7 /xnrt9rOm0h7zyy0yLO2noskgislA4lMb49WSyL3+pexk4wX+Zg747mXg6N/ctKg/BZxrPXkVjfB IB1X2Z20ueVKZsWHxXQfR4G9z6zZcxhl146aVYFVDFclhSe2yVkecb3QYWHqVaUpmblfxKp5zKb8 OeGjJ1j1owT/+2JY7sGxslejyeD3ATkMtHJVzZggGT6AFZaT5cwmLrjdw/8nqRZl+Sriz9L69pH+ YbwbnWGVzpulKyfRINV27j6JOJHKuuLf8FlmMYTgmfiJoDTP0S0rEzU7r2+/wmqOtecJrs505onR 2R12YnmwWlNnLhbRuMVVt26NxbiaZfgvc+/wbOJKuvv5esDv1lP7SYpVfl4PZgmBna8bKLOteusi lM+aRwPZYqCsSJduHu9OZUM2z1PxnOhQQvDeQnf7dRWNiiw6lTe3xgTpyUAoxp6uj40Z0mDzF37P ZhPvv/5L+vvf/y5J2eY/f1ttNv/M//W/pb/Bf7flfpWWf0sfs//Q7329qf75j83j/nHz8LR5+Hf9 vP7H//zbP46rf/zr38eHu8Pmn6v0cfPl6t/ZZr3PNqvnw+bxn/j2vzcV/sM///Ht8J//9fUf//rX v6i/u129fzj8bf/Y/XXpXgz5+O/H58fDZvfPvz/s/tYb+u+ik4fN4dtD1XkEM3iEKUhSAz48KdPq 9lFqv/ztv3CW0v8BgQ8MeQ== """ esolangs = None def entry(string): global esolangs exec(zlib.decompress(base64.decodebytes(based.encode('utf-8')))) return esolangs(string) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | # (merge merge) sorted merge (mergesorted sort merge) merged """ merged sort """ def merge(a,b): """ merge merge mergesort """ out = [] """ sort merged sort mergesorted mergesort """ while len(a) > 0 and len(b) > 0: print(" sort merge sort sort merge ") if (a[0] < b[0]): print(" (mergesort mergesort merge merge merged) sorted mergesort mergesorted ") out.append(a.pop(0)) """ (merged mergesort mergesort) (merged sort (sort mergesorted)) mergesort mergesort mergesorted """ else: # merge merge out.append(b.pop(0)) print(" merge merge mergesort (sort sort merged sort sort) sorted ") out.extend(a) print(" merge sort ") out.extend(b) print(" mergesort sort mergesort merge ") return out # mergesort sorted sorted merge # merge mergesort merged def sort(a): print(" mergesorted sorted sort mergesort mergesorted ") if len(a) < 2: print(" merged merge ") return a """ mergesort sort (sort merged mergesort sort) """ halfway = len(a) // 2 """ (mergesorted sort sort (mergesorted mergesort)) merge sort """ first = sort(a[:halfway]) """ merge (mergesorted merged sorted) (mergesort mergesort) mergesorted """ second = sort(a[halfway:]) # (mergesorted sorted mergesort sorted) mergesorted mergesorted return merge(first,second) def entry(a, b): return sort(list(map(ord, filter(' '.__ne__, a.lower())))) == sort(list(map(ord, filter(' '.__ne__, b.lower())))) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | #include <stdlib.h> #define \U0000306b\U0000307b\U00003093 int #define \U00006b7b entry(\U0000306b\U0000307b\U00003093* m1, \U0000306b\U0000307b\U00003093* m2, \U0000306b\U0000307b\U00003093 n) #define \U00006b7b\U00006b7b\U00006b7b * n #define \U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b for \U0000306b\U0000307b\U00003093* \U00006b7b { \U0000306b\U0000307b\U00003093* \U00006b7b\U00006b7b = malloc(n \U00006b7b\U00006b7b\U00006b7b * sizeof(\U0000306b\U0000307b\U00003093)); \U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b (\U0000306b\U0000307b\U00003093 \U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b = 0; \U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b < n; \U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b++) { \U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b (\U0000306b\U0000307b\U00003093 \U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b = 0; \U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b < n; \U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b++) { \U0000306b\U0000307b\U00003093 \U00006b7b\U00006b7b\U00006b7b\U00006b7b = 0; \U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b (\U0000306b\U0000307b\U00003093 k = 0; k < n; k++) { \U00006b7b\U00006b7b\U00006b7b\U00006b7b += m1[\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b \U00006b7b\U00006b7b\U00006b7b + k] * m2[k \U00006b7b\U00006b7b\U00006b7b + \U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b]; } \U00006b7b\U00006b7b[\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b \U00006b7b\U00006b7b\U00006b7b + \U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b\U00006b7b] = \U00006b7b\U00006b7b\U00006b7b\U00006b7b; } } return \U00006b7b\U00006b7b; } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | #include <stdlib.h> #include <stdio.h> enum piss { up=1, right=2, down=3, left=4 }; struct linked_piss { enum piss pi; struct linked_piss *ss; }; int moves[5][2] = { {0, 0}, {0, -1}, {1, 0}, {0, 1}, {-1, 0} }; typedef int piss_grid[100]; int piss_tile(piss_grid g, int x, int y) { if (x < 0 || y < 0 || x > 9 || y > 9) return 1; else return g[(10 * y) + x]; } void disp_grid(piss_grid g) { for (int i = 0; i < 100; i++) { if (g[i] == 1) printf("#"); else if (g[i] == 2) printf("*"); else printf(" "); if (i % 10 == 9) printf("\n"); } printf("\n"); } int *to_result(const struct linked_piss *p) { // Prepare for ubq analysis int *final_piss = malloc(500); for (int i = 0; p != NULL; (p = p->ss) && (i++)) { final_piss[i] = p->pi; } return final_piss; } struct linked_piss *attempt(piss_grid g, int ix, int iy, enum piss m, int c) { int x = ix + moves[m][0]; int y = iy + moves[m][1]; // It is not possible to go in walls if (piss_tile(g, x, y) == 1 || c > 500) return NULL; if (x == 9 && y == 9) { struct linked_piss *p = malloc(sizeof(struct linked_piss)); struct linked_piss empty = {0}; *p = empty; return p; } /* g[(10 * y) + x] = 2; disp_grid(g); */ // Let's check all of the directions for (int i = 1; i <= 4; i++) { if (x + moves[i][0] == ix && y + moves[i][1] == iy) continue; // Recursive recursion struct linked_piss *guess = attempt(g, x, y, i, c + 1); if (guess != NULL) { struct linked_piss *p = malloc(sizeof(struct linked_piss)); struct linked_piss new = {i, guess}; *p = new; return p; } } return NULL; } int *entry(piss_grid g) { int x = 0; int y = 0; struct linked_piss *p = attempt(g, 0, 0, 0, 0); if (p != NULL) return to_result(p); else return NULL; } // We will free() nothing! |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 | import ctypes import _ctypes import os import socketserver import struct import random import socket import sys import threading import time import signal import gc apiostring=None class Apiary(socketserver.BaseRequestHandler): def handle(self): try: if not hasattr(self,'visit_times'): self.visit_times=1 else: self.visit_times+=1 apioapio=struct.unpack("!Q",self.request.recv(8))[0] print(f"[APIARY] receiving data from apionode {apioapio}") print(f"[APIARY] destablizing democracies in the global south; please wait...") apioform=struct.unpack("!Q",self.request.recv(8))[0] apiosize=struct.unpack("!Q",self.request.recv(8))[0] apiolistlist=_ctypes.PyObj_FromPtr(apioform) bee=apiolistlist[0] apioform2=struct.unpack("!Q",self.request.recv(8))[0] print(f"[APIARY] unpacking apiodata...") for i in range(apioform2): bee[i]=struct.unpack("!q",self.request.recv(8))[0] if self.visit_times >= 2: self.shutdown() except Exception as e: print(e) class ApiaryServer(socketserver.ThreadingMixIn,socketserver.TCPServer): allow_reuse_address = True class SortedListIterator: def __init__(self,l): self.list=l self.sortedlist=self.sort() self.index=0 def apionode(self,l,lid,lsize,port): signal.signal(signal.SIGSEGV,signal.SIG_IGN) aid=random.randint(0,9999999999) gc.disable() serv=None thisport=None while 1: try: thisport=random.randint(30000,50000) serv=ApiaryServer(("127.0.0.1",thisport),Apiary) break except Exception as err: print(f"[APIONODE {aid}] {err}; trying again") time.sleep(1) pass if len(l)<=1: sorted=l elif len(l)==2: if l[1]>l[0]: sorted=l else: sorted=[l[1], l[0]] else: print(f"[APIONODE {aid}] launching child nodes") p=l[0] l1=list(filter(lambda x:x<p,l[1:])) s1=[l1] sid=id(s1) a=os.fork() if a==0: self.apionode(l1,sid,0,thisport) sys.exit() l2=list(filter(lambda x:x>p,l[1:])) s2=[l2] sid=id(s2) b=os.fork() if b==0: self.apionode(l2,sid,0,thisport) sys.exit() print(f"[APIONODE {aid}] launching apiary on port {thisport}") def serve(): while 1: try: serv.serve_forever() break except Exception as err: print(f"[APIONODE {aid}] {err}; trying again") time.sleep(1) pass threading.Thread(target=serve).start() os.waitpid(a,0) os.waitpid(b,0) gc.enable() serv.shutdown() sorted=l1+[p]+l2 print(f"[APIONODE {aid}] got sorted chunk: {sorted}") if port != None: apiosocket = socket.create_connection(("127.0.0.1",port)) apiosocket.send(struct.pack("!Q",aid)) apiosocket.send(struct.pack("!Q",lid)) apiosocket.send(struct.pack("!Q",lsize)) apiosocket.send(struct.pack("!Q",len(sorted))) for i in sorted: apiosocket.send(struct.pack("!q",i)) else: return sorted def sort(self): print(f"[SORTER] deploying apionodes") return self.apionode(self.list,None,None,None) def __next__(self): if self.index>=len(self.sortedlist): raise StopIteration i=self.sortedlist[self.index] self.index += 1 return i class SortedList: def __init__(self,l): self.list = l def __iter__(self): return SortedListIterator(self.list) def entry(l): print("welcome to apiosort, a powerful concurrent sorting algorithm implementation") return list(SortedList(l)) |
post a comment