name | correct guesses | games together | ratio |
---|
name | correct guesses | games together | ratio |
---|---|---|---|
LyricLy | 2 | 4 | 0.500 |
IFcoltransG | 0 | 4 | 0.000 |
quintopia | 0 | 4 | 0.000 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ( ( __import__ ( "forbiddenfruit" ) . curse ( tuple, "then", lambda a, f: f ( *a ) ), ) . then ( lambda _: ( __import__ ( "collections" ) . Counter, __import__ ( "operator" ) . eq, __import__ ( "sys" ) . modules, ) ) . then ( lambda count, eq, mods: ( lambda a, b: ( eq ( count ( str.replace ( ( str.lower ( a ) ), " ", "" ) ), count ( str.replace ( ( str.lower ( b ) ), " ", "" ) ), ) ), ) . then ( lambda entry: ( ( mods [ __name__ ] ), ) . then ( lambda mod: ( ( setattr ( mod, "entry", entry ) ), ) ) ) ) ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 | import itertools import re from collections import namedtuple class Maybe: class _Base: def __matmul__(self, other): return type(self) == type(other) or type(self) == other def __neg__(self): return self.remaining def wrap(self, value): new = self.__class__(**self._asdict()) if new @ Maybe.Just: new.result = value return new class Just(_Base, namedtuple("Just", "result remaining")): ... class Nothing(_Base, namedtuple("Nothing", "remaining")): ... class Skip(_Base, namedtuple("Skip", "remaining")): ... class Combinator: def __init__(self, parser): self.parser = parser def __call__(self, *args, **kwargs): return self.parser(*args, **kwargs) def __gt__(self, other): if not isinstance(other, tuple): other = (other,) return self(*other) def combinator(func): return Combinator(func) @combinator def first_success(*parsers): def inner(input_text): for parser in parsers: result = parser(input_text) if result @ Maybe.Just: return result return Maybe.Nothing(input_text) return inner @combinator def at_least(parser, times): def inner(input_text): results = [] def recursive_parse(text): result = parser(text) if result @ Maybe.Just or result @ Maybe.Skip: if result @ Maybe.Just: results.append(result.result) return recursive_parse(-result) else: # haskell ternary is cooler return Maybe.Just(tuple(results), -result) if len(results) >= times else Maybe.Nothing(-result) return recursive_parse(input_text) return inner @combinator def at_least_zero(parser): return at_least(parser, 0) @combinator def at_least_once(parser): return at_least(parser, 1) @combinator def apply(*parsers): def inner(input_text): results = [] text = input_text for parser in parsers: result = parser(text) if result @ Maybe.Nothing: return Maybe.Nothing(input_text) else: if result @ Maybe.Just: results.append(result.result) text = -result return Maybe.Just(tuple(results), text) return inner @combinator def separated(parser, separator): def inner(input_text): results = [] cycle = itertools.cycle([(True, parser), (False, separator)]) text = input_text for (should_keep, cycle_parser) in cycle: result = cycle_parser(text) if result @ Maybe.Just: if should_keep: results.append(result.result) else: return Maybe.Just(tuple(results), text) text = -result return inner @combinator def ws(parser): def inner(input_text): return parser(input_text.lstrip()) return inner @combinator def tag(text): def inner(input_text): return Maybe.Just(text, input_text[len(text):]) if input_text.startswith(text) else Maybe.Nothing(input_text) return inner @combinator def regex(pattern): def inner(input_text): if (match := re.match(pattern, input_text)): return Maybe.Just(match, input_text[len(match[0]):]) else: return Maybe.Nothing(input_text) return inner @combinator def defer(name): return globals().get(name) @combinator def ignore(parser): def inner(input_text): result = parser(input_text) if result @ Maybe.Nothing: return result else: return Maybe.Skip(-result) return inner @combinator def flatten(parser): def inner(input_text): result = parser(input_text) if not result @ Maybe.Just: return result flattened = [] def visit(item): if type(item) == Maybe.Just: item = item.result if isinstance(item, tuple): for subitem in item: visit(subitem) else: flattened.append(item) visit(result) return Maybe.Just(tuple(flattened), -result) return inner def transform(transform_func): @combinator def wrapped(parser): def inner(input_text): result = parser(input_text) if not result @ Maybe.Just: return result else: return transform_func(result.result) return inner return wrapped class ASTNode: StructField = namedtuple("Field", "name type") Struct = namedtuple("Struct", "name fields") class Transformer: @staticmethod def struct(tree): return ASTNode.Struct( tree[0].group(0), *(ASTNode.StructField(field_name.group(0), field_type.group(0)) for field_name, field_type in zip(tree[1::2], tree[2::2])), ) INT = regex("[0-9]+") FLOAT = apply(INT, tag("."), INT) SEQUENCE = apply( tag("["), separated( defer("EXPR"), ws > tag(",") ), tag("]") ) IDENT = regex("[a-zA-Z]+[a-zA-Z0-9]*") ATTRIBUTE = apply(IDENT, at_least_zero > apply(tag("."), IDENT)) ASSIGNMENT = apply(ATTRIBUTE, ws > tag(":="), defer("EXPR")) ADD = apply(defer("EXPR"), ws > tag("+"), defer("EXPR")) SUB = apply(defer("EXPR"), ws > tag("-"), defer("EXPR")) MUL = apply(defer("EXPR"), ws > tag("*"), defer("EXPR")) DIV = apply(defer("EXPR"), ws > tag("/"), defer("EXPR")) GENERIC_HEAD = apply( tag("<"), separated( first_success( defer("GENERIC_TYPE"), ATTRIBUTE ), ws > tag(",") ), tag(">"), ) CALL_HEAD = apply( tag("("), separated( defer("EXPR"), ws > tag(",") ), tag(")"), ) GENERIC_TYPE = apply(ATTRIBUTE, GENERIC_HEAD) CALL = apply( ATTRIBUTE, at_least_once( first_success(ws > GENERIC_HEAD, ws > at_least_once(CALL_HEAD)) ) ) FOR = apply( tag("foreach"), ws > IDENT, ws > tag("of"), ws > defer("EXPR"), ws > tag("{"), at_least_zero > apply(ws > defer("ITEM"), ws > tag(";")), ws > tag("}") ) STRUCT = transform(Transformer.struct) > ( flatten > apply( ignore > tag("struct"), ws > ATTRIBUTE, ignore > (ws > tag("{")), separated( apply( ws > IDENT, ignore > (ws > tag(":")), ws > first_success(GENERIC_TYPE, ATTRIBUTE)), ignore > (ws > tag(","))), ignore > (ws > tag("}")) ) ) result = STRUCT(r"struct example {a: b}") def entry(left, right): return [ [ sum( a * b for a, b in zip(left_row, right_column) ) for right_column in zip(*right) ] for left_row in left ] |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | def repeat(i, n): for _ in range(n): yield i def do_n(functor, n): def do(func): return map(functor, repeat(func, n)) return do def call_n(n): def call(func): return do_n(lambda c: c(), n)(func) return call def call_n_m(n, m): def call(func): return call_n(n)(lambda: [*call_n(m)(func)]) return call def map_i(c): def do(func): return map(lambda i: [*map(func, i)], c) return do def part(*a, **kw): def do(func): return lambda: func(*a, **kw) return do def take_n(n): def do(i): for _ in range(n): yield next(i) return do def label_i(i): idx = int() for itm in i: yield (idx := idx + 1, *itm) def entry(flat_maze): (as_i) = iter(flat_maze) (maze) = [*call_n(10)(lambda: [*take_n(10)(as_i)])] (directions, solution) = call_n(2)(list) (visited, correct) = call_n(2)(lambda: [*call_n_m(10, 10)(bool)]) (start_x, start_y), (end_x, end_y) = ( start := [0, 0], end := [9, 9], ) def solve(y, x): while (y, x) != (end_y, end_x): visited[y][x] = True solution.append((y, x)) def do(*a): for func in a: (y_, x_) = func() if 0 <= y_ <= 9 and 0 <= x_ <= 9 and not maze[y_][x_] and not visited[y_][x_]: return (y_, x_) solution.pop() possible = solution[-1] solution.pop() return possible y, x = do( lambda: [y - 1, x ], lambda: [y + 1, x ], lambda: [y , x - 1], lambda: [y , x + 1], ) solution.append((end_y, end_x)) return solution def directions_l(d): for o1, o2 in zip(d, d[1:]): o = ( o1[0] - o2[0], o1[1] - o2[1], ) yield { ( 1, 0 ): 1, ( 0, 1 ): 2, ( -1, 0 ): 3, ( 0, -1 ): 4, }[o] return [*directions_l(solve(0, 0))] def tests(): cases = [ [ 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ], [ 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ], [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, ], ] for case in cases: print_maze(case) print(entry(case)) def print_maze(maze): as_i = iter(maze) [*call_n(10)(lambda: print("".join("▓" if cell else "░" for cell in take_n(10)(as_i))))] |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | from typing import List # Sort a list of integers def entry(data: List[str]): swap = False for i, (one, two) in enumerate(zip(data, data[1:])): if two > one: # Swaps items data[i], data[i + 1] = data[i + 1], data[i] swap = True # Checks if we need to recur if swap: return entry(data) else: return data.reverse() or data |
post a comment