
	
	
	
	
	
	
	

	
Approximate	Pathfinding	Algorithms	

Using	Ergodic	Markov	Chains	
	

The	Esolangs	Code	Guessing	Round	25	 	

	

Finding	Paths	
	
Pathfinding	is	a	classic	problem	for	which	exact	algorithms	are	unreasonably	
complex.	In	this	Tumblr	post,	we	define	a	pathfinding	problem	as	a	3-tuple	
(𝐺, 𝑒!, 𝑒")	where	𝐺 ≝ (𝐸, 𝑉)	is	a	directed	graph	and	𝑒!, 𝑒" ∈ 𝐸	.	The	graph	𝐺	is	
contractually	represented	using	an	adjacency	matrix	𝐴 = {0,1}|$|×|$|.	A	
pathfinding	solution	to	such	as	problem	is	a	sequence	of	𝑛	edges	𝑆 = 𝑠&, … , 𝑠',	
such	that	

Ø 	𝑠(∈ 𝐸	for	all	𝑠(,	
Ø 	𝑠& = 𝑒!,	
Ø 𝑠' = 𝑒",	and	
Ø 𝐴)!"#,)! = 1		for	all	0 < 𝑖 < 𝑛.	

A	pathfinding	algorithm	is	then	morally	represented	as	a	function	from	the	set	
of	pathfinding	problems	to	pathfinding	solutions.	We	will	try	our	hardest	to	
construct	such	a	function.	

Abolish	Borders	
	
In	the	general	case,	a	pathfinding	problem	is	awfully	stressful.	We	don’t	even	
know	if	there	exists	a	path	from	𝑒!	to	𝑒"	—	how	terrifying!	In	these	sorry	
situations,	one	typically	makes	additional	assumptions.	For	example,	we	could	
assume	the	existence	of	a	pathfinding	solution.	But,	following	in	the	footsteps	
of	famous	philosophers,	we	shall	assume	stricter	conditions	on	the	state	of	the	
universe.	We	assume	that	a	solution	𝑆	exists	irrespective	of	the	choice	of		𝑠!	
and	𝑠".	This	will	not	be	motivated.	
	

Markov	Chains	
	
We	skip	some	crucial	definitions	as	an	extra	challenge	
	

Transition	
	
Hey	darn	would	you	look	at	that,	the	adjacency	matrix	is	almost	the	same	as	
the	transition	matrix	for	a	Markov	chain.	We	just	need	to	fix	it	to	fit	the	
definitions	above.	Figure	1	shows	an	algorithm	for	converting	an	adjacency	
matrix	into	a	transition	matrix.	
	
Figure	1:	An	algorithm	for	converting	an	adjacency	matrix	into	a	transition	
matrix	
def	trans(A):	
								return	A	/	A.sum(0)	
	

Ergo,	Ergodic	
	
Theorem	1.	Let	𝑃	be	the	transition	matrix	for	a	regular	Markov	chain.	Then,	
the	limit	
	

lim
'→,

𝑃' = 𝑊	

	
exists	and	converges	to	the	limiting	matrix		

𝑊 = <
𝒘
⋮
𝒘
?	

	
consisting	of	copies	of	the	fixed	vector	𝒘.	Furthermore,	𝒘	is	a	left	eigenvector	
of	𝑃	corresponding	to	the	eigenvalue	1,	or	equivalently,	𝒘 ∈ coker 𝑃 − 𝐼.	Oh	
and	also,	dim coker 𝑃 − 𝐼 = 1.	We’ll	need	that	later	
	
To	prove	this,	we	use	the	fact	that	𝑊	contains	only	constant	columns.	As	rows	
of	𝑃	are	probability	vectors,	applying	𝑃	to	a	probability	vector	𝒙	transforms	it	
under	some	weighted	averages.	This	transformation	monotonically	reduces	
max	𝒙 − min 𝒙,	which	can	be	used	to	prove	the	first	part	of	the	theorem.	The	

rest	ought	to	be	simple	enough	with	some	basic	linear	algebra,	too,	so	don’t	
shy	away.	
As	a	bonus,	figure	1	shows	an	algorithm	to	find	the	limiting	matrix	of	a	regular	
Markov	chain.	
	
Figure	1:	An	algorithm	to	find	the	limiting	matrix	of	a	regular	Markov	chain	
def	lma(A):	
		w=	linalg.null_space((A	-	np.identity(len(A)).T)	#	TODO:	test	this	code	
		return	np.tile(w,	len(w))	
	
	
Theorem	1.	Let	𝑃	be	the	transition	matrix	for	an	ergodic	Markov	chain.	Then,		
	

1
2
(𝐼 + 𝑃)	

is	regular,	and	
	

lim
'→,

𝑃' = lim
'→,

N
1
2
(𝐼 + 𝑃)O

'
.	

	
	
Proof:																																																																																																																																		∎	
	
Figure	1	shows	an	algorithm	to	convert	the	transition	matrix	of	an	ergodic	
Markov	chain	to	a	regular	one,	preserving	limiting	matrices.	
	
Figure	1:	An	algorithm	to	convert	the	transition	matrix	of	an	ergodic	Markov	
chain	to	a	regular	one,	preserving	limiting	matrices	
def	regular(A):	
						return	(A	+	np.identity(len(A)))	/	2	
	

	

Mean	
	
Ergodic	Markov	chains	allow	one	to	slide	from	one	state	to	another	rather	
smoothly.	However,	in	order	to	be	appropriately	smooth,	one	must	apply	the	
appropriate	amount	of	gel	to	their	hair.	To	estimate	this,	a	new	metric	is	
required.	
	
An	ergodic	Markov	chain,	initially	at	state	𝑠(,		will	reach	a	state	𝑠-	in	some	
expected	number	of	steps.	We	denote	this	𝑚(- ,	for	the	mean	passage	time.	As	
an	unmarked	theorem,	check	out	how	𝑚(-	is	bounded	by	the	number	of	states!	
Also,	we	denote	𝑟(-	by	the	mean	recurrence	time,	or	how	long	it’ll	take	little	
ants	to	retrace	their	steps.	Look,	I’m	just	copying	from	a	textbook	at	this	point,	
it’s	not	like	this	really	matters.	
	
Let’s	use	a	matrix	𝑀	to	hold	all	the	mean	times;	indexed	how	you’d	expect.	
Here	comes	a	consequence	of	that:	
	
Theorem	1:	Let’s	use	a	matrix	𝑀	to	hold	all	the	mean	times	for	a	matrix	𝑃;	
indexed	how	you’d	expect.	Then,	
	

(𝐼 − 𝑃)𝑀 = 	𝟏 − 𝑑𝑖𝑎𝑔X𝑟&, … , 𝑟./0123('4Y.	
	
Wahoo	we	won’t	use	that	I’m	just	padding	the	word	count	are	we	at	4000	yet	
	

The	misadventures	of	skater	Zeb	
	
A	cool	matrix	𝑍	is	given	by	(𝐼 − 𝑃 +𝑊)56.	This	inverse	exists*.		

	
Then,	the	entries	𝑚(-	to	that	previous	𝑀	is	given	by		

𝑚(- =
𝑧-- − 𝑧(-
𝑤-

	

	
As	you	would	expect,	this	is	implemented	by	Figure	1.	
	
Figure	1:	this	is	implemented	by	

	
	

Finally	we	find	a	path	
	
A	skill	solution	can	be	estimated	using	the	mean	passage	time	matrix.	For	a	
skill	issue	from	states	Α	to	Ω,	the	right	indices	in	𝑚	will	tell	us	how	long	to	
wait.	Then	it	is	a	matter	of	simply	enumerating	every	single	path	of	length	(⋅)	
until	we	find	the	right	one.	We	mightnot	find	a	path	since	it’s	only	the	average.	
But	that’s	okay.	Approximations	are	always	good,	especially	if	they	are	slow.		
	
Figure	1:	The	final	countdown	
									def	search(A,	l,	a,	v):	
																	<haskell	do	block	with	[State	a]	monad/>	
	
	
	
	
	
	
	
Sources	
https://cg.esolangs.gay/25/		
https://en.wikipedia.org/wiki/Absorbing_Markov_chain	
https://en.wikipedia.org/wiki/Monte_Carlo_method	
https://en.wikipedia.org/wiki/Categorical_theory	
https://www.google.com/search?hl=en&q=matrix%20inverse%20calculator	
https://alf.nu/SHA1	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
sorry,	I	couldn’t	resist	
██████████▀▀▀▀▀▀▀▀▀▀▀▀▀██████████
█████▀▀░░░░░░░░░░░░░░░░░░░▀▀█████
███▀░░░░░░░░░░░░░░░░░░░░░░░░░▀███
██░░░░░░░░░░░░░░░░░░░░░░░░░░░░░██
█░░░░░░▄▄▄▄▄▄░░░░░░░░▄▄▄▄▄▄░░░░░█
█░░░▄██▀░░░▀██░░░░░░██▀░░░▀██▄░░█
█░░░██▄░░▀░░▄█░░░░░░█▄░░▀░░▄██░░█
██░░░▀▀█▄▄▄██░░░██░░░██▄▄▄█▀▀░░██
███░░░░░░▄▄▀░░░████░░░▀▄▄░░░░░███
██░░░░░█▄░░░░░░▀▀▀▀░░░░░░░█▄░░░██
██░░░▀▀█░█▀▄▄▄▄▄▄▄▄▄▄▄▄▄▀██▀▀░░██
███░░░░░▀█▄░░█░░█░░░█░░█▄▀░░░░███
████▄░░░░░░▀▀█▄▄█▄▄▄█▄▀▀░░░░▄████
███████▄▄▄▄░░░░░░░░░░░░▄▄▄███████you’ve been sansd

